Journal of Food Measurement and Characterization

, Volume 12, Issue 3, pp 1548–1555 | Cite as

A comprehensive study of polyphenols contents and antioxidant potential of 39 widely used spices and food condiments

  • Awraris Derbie Assefa
  • Young-Soo Keum
  • Ramesh Kumar SainiEmail author
Original Paper


Spices and condiments are rich sources of potent antioxidants. In the present investigation, total equivalent antioxidant capacities (TEAC) of 39 spices were studied using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) scavenging, and cupric reducing antioxidant capacity (CUPRAC) assays. Their total phenolic contents (TPC) and total flavonoid contents (TFC) were also determined. TEAC, TPC, and TFC varied significantly (P < 0.05) among these spices. ABTS, DPPH, and CUPRAC assay values of studied spices ranged from 1.42 to 112.94 mg ascorbic acid equivalents (AAE)/g, 1.14 to 91.09 mg Trolox equivalents (TE)/g, and 0.52 to 54.47 mg TE/g, respectively (dry weight basis; DW). Based on Folin–Ciocalteu assay, TPC ranged from 2.93 to 160.55 mg of gallic acid equivalents (GAE)/g DW. Strong correlations between TPC and TEAC values (R = 0.966, 0.825, and 0.954 for ABTS, DPPH, and CUPRAC, respectively) were found. This indicates that phenolic compounds are potent antioxidants in these spices. Principal component analysis (PCA) indicated that cloves (flower buds of Syzygium aromaticum) had the most distinct and potent antioxidant capacity, followed by allspice (fruits of Pimenta dioica) and cinnamon (bark of Cinnamomum verum). Results of the present study provide adequate evidence that polyphenols are responsible for their compelling antioxidant capacities of studied spices. Thus, consumption of antioxidant-rich spices such as cloves, allspice, and cinnamon can significantly prevent oxidative stress in the human body.


Total phenolic contents Total flavonoid contents DPPH ABTS CUPRAC Principal component analysis 



This paper was supported by KU research professor program of Konkuk University, Seoul, Republic of Korea.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to disclose.


  1. 1.
    V. Lobo, A. Patil, A. Phatak, N. Chandra, Pharmacogn. Rev. 4, 118 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    B. Halliwell, Drugs Aging. 18, 685 (2001)CrossRefPubMedGoogle Scholar
  3. 3.
    B.D. Craft, A.L. Kerrihard, R. Amarowicz, R.B. Pegg, Compr. Rev. Food Sci. Food Saf. 11, 148 (2012)CrossRefGoogle Scholar
  4. 4.
    F. Shahidi, P. Ambigaipalan, J. Funct. Foods. 18, 820 (2015)CrossRefGoogle Scholar
  5. 5.
    S.J. Flora, Oxid. Med. Cell. Longev. 2, 191 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    U.N. Prakash, K. Srinivasan, J. Sci. Food Agric. 92, 503 (2012)CrossRefPubMedGoogle Scholar
  7. 7.
    H. Lindberg Madsen, G. Bertelsen, Trends Food Sci. Technol. 6, 271 (1995)CrossRefGoogle Scholar
  8. 8.
    J. Xie, P. VanAlstyne, A. Uhlir, X. Yang, Eur. J. Lipid Sci. Technol. 119, (2017)Google Scholar
  9. 9.
    H. Cetin-Karaca, M.C. Newman, Food Biosci. 11, 8 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Suhaj, J. Food Compos. Anal. 19, 531 (2006)CrossRefGoogle Scholar
  11. 11.
    M. Przygodzka, D. Zielińska, Z. Ciesarová, K. Kukurová, H. Zieliński, LWT - Food Sci. Technol. 58, 321 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Wojdyło, J. Oszmiański, R. Czemerys, Food Chem. 105, 940 (2007)CrossRefGoogle Scholar
  13. 13.
    A.L. Waterhouse, Curr. Protoc. Food Anal. Chem. 11.1.1–11.1.8 (2002)Google Scholar
  14. 14.
    C.C. Chang, M.H. Yang, H.M. Wen, J.C. Chern, J. Food Drug Anal. 10, 178 (2002)Google Scholar
  15. 15.
    K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, D. Hawkins, Byrne, J. Food Compos. Anal. 19, 669 (2006)CrossRefGoogle Scholar
  16. 16.
    A.D. Assefa, R.K. Saini, Y.S. Keum, J. Food Meas. Charact. 11, 364 (2017)CrossRefGoogle Scholar
  17. 17.
    W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT - Food Sci. Technol. 28, 25 (1995)CrossRefGoogle Scholar
  18. 18.
    R. Apak, K. Güçlü, M. Ozyürek, S.E. Karademir, J. Agric. Food Chem. 52, 7970 (2004)CrossRefPubMedGoogle Scholar
  19. 19.
    J. Pérez-Jiménez, V. Neveu, F. Vos, A. Scalbert, Eur. J. Clin. Nutr. 64, S112 (2010)CrossRefPubMedGoogle Scholar
  20. 20.
    S. Dudonné, X. Vitrac, P. Coutière, M. Woillez, J.-M. Mérillon, J. Agric. Food Chem. 57, 1768 (2009)CrossRefPubMedGoogle Scholar
  21. 21.
    C.-C. Chang, M.-H. Yang, H.-M. Wen, J.-C. Chern, J. Food Drug Anal. 10, (2002)Google Scholar
  22. 22.
    H. Liu, N. Qiu, H. Ding, R. Yao, Food Res. Int. 41, 363 (2008)CrossRefGoogle Scholar
  23. 23.
    H.J.D. Dorman, M. Koşar, K. Kahlos, Y. Holm, R. Hiltunen, J. Agric. Food Chem. 51, 4563 (2003)CrossRefPubMedGoogle Scholar
  24. 24.
    Y. Lu, L. Yeap, Foo, Food Chem. 75, 197 (2001)CrossRefGoogle Scholar
  25. 25.
    W. Zheng, S.Y. Wang, J. Agric. Food Chem. 49, 5165 (2001)CrossRefPubMedGoogle Scholar
  26. 26.
    U. Justesen, P. Knuthsen, Food Chem. 73, 245 (2001)CrossRefGoogle Scholar
  27. 27.
    S. Sahin, V. Eulenburg, A. Heinlein, C. Villmann, M. Pischetsrieder, J. Funct. Foods. 37, 641 (2017)CrossRefGoogle Scholar
  28. 28.
    S.S. Islam, I. Al-Sharif, A. Sultan, A. Al-Mazrou, A. Remmal, A. Aboussekhra, Mol. Carcinog. 57, 333 (2018)CrossRefPubMedGoogle Scholar
  29. 29.
    S.P. Wong, L.P. Leong, J.H. William Koh, Food Chem. 99, 775 (2006)CrossRefGoogle Scholar
  30. 30.
    Z. Jia, M.-J. Dumont, V. Orsat, Food Biosci. 15, 87 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Crop ScienceKonkuk UniversitySeoulRepublic of Korea

Personalised recommendations