Changes in microstructure and functional properties of papaya as affected by osmotic pre-treatment combined with freeze-drying

  • Patchimaporn Udomkun
  • Dimitrios Argyropoulos
  • Marcus Nagle
  • Busarakorn Mahayothee
  • Alamu Emmanuel Oladeji
  • Joachim Müller
Original Paper


Freeze-drying represents a very effective method to significantly prevent loss of nutrients, especially heat-sensitive compounds. Moreover, osmotic dehydration is frequently applied prior to drying in order to facilitate moisture removal and improve quality. In the present study, the effect of osmotic pre-treatment combined with freeze-drying at different working pressures on microstructure, colour, and functional properties such as carotenoid contents, total phenolic contents (TP) and antioxidant activity in papayas was investigated. Osmotic pretreatment prior to freeze-drying resulted in increased yellowness, apparent density, and solid density, while carotenoids, TP, and antioxidant activity were lower compared to untreated samples. SEM images clearly showed that the effect of working pressure on the characteristic of dried papaya structure. Samples dried at working pressure of 9 and 77 kPa showed higher deformation with large cavities and dense dry layer when compared with those at 28 kPa. In addition, samples were significantly higher in lightness, redness, colour difference, and porosity when the working pressure was applied at 9 kPa. A reduction of working pressure had a negative effect on the retention of carotenoids, TP, and antioxidant activity in freeze-dried samples. It can be concluded that 28 kPa of pressure better conserved bioactive compounds and minimised structural deformation.


Drying Papaya Carotenoids Phenolics Antioxidants Bioactive compounds 



This research was the result of a scholarship from the Food Security Center of Universität Hohenheim, which is part of the DAAD (German Academic Exchange Service) Program “Exceed” supported by DAAD and the German Federal Ministry for Economic Cooperation and Development (BMZ). The authors gratefully acknowledge the “ILRI/IITA Crop Livestock Integration Project (PJ-002057)” for giving the opportunity to prepare this article. The authors also acknowledge the contributions of the CGIAR Research Program on Agriculture for Nutrition and Health; and supported by International Institute of Tropical Agriculture (IITA), which supported co-authorship of the paper. We are also grateful to Mrs. Ute Waldeck, Mrs. Sarah Fleischmann, Ms. Alice Hack, and Mr. Alexander Nimo Wiredu for their technical supports.


  1. 1.
    R. Lemus-Mondaca, M. Miranda, A.A. Grau, V. Briones, R. Villalobos, A. Vega-Gálvez, A., Drying Technol. 27(10), 1105–1115 (2009)CrossRefGoogle Scholar
  2. 2.
    Y.K. Pan, L.J. Zhao, Y. Zhang, G. Chen, A.S. Mujumdar, Drying Technol. 21(6), 1101–1114 (2003)CrossRefGoogle Scholar
  3. 3.
    P. Udomkun, M. Nagle, B. Mahayothee, D. Nohr, A. Koza, J. Müller, J. LWT-Food Sci. Technol. 60(2), 914–922 (2015)CrossRefGoogle Scholar
  4. 4.
    P. Udomkun, M. Nagle, D. Argyropoulos, J. Müller, in Innovative Processing Technologies for Food with Bioactive Compounds, ed. by J.J. Moreno (CRC Press, Boca Raton, 2016), pp. 195–208Google Scholar
  5. 5.
    M. Riva, S. Campolongo, A.A. Leva, A. Maestrelli, D. Torreggiani, Food Res. Int. 38, 533–542 (2005)CrossRefGoogle Scholar
  6. 6.
    P. Udomkun, B. Mahayothee, M. Nagle, J. Müller, J. Int. J. Food Sci. Technol. 49(4), 1122–1131 (2014)CrossRefGoogle Scholar
  7. 7.
    M.J. Moraga, G. Moraga, N. Martínez-Navarrete, LWT-Food Sci. Technol. 44(1), 35–41 (2001)CrossRefGoogle Scholar
  8. 8.
    R. Peiró, V.M.C. Dias, M.M. Camacho, N. Martínez-Navarrete, J. Food Eng. 74(3), 299–307 (2006)CrossRefGoogle Scholar
  9. 9.
    J. Shi, M. Le Maguer, Food Rev. Int. 18(4), 305–335 (2002)CrossRefGoogle Scholar
  10. 10.
    D. Argyropoulos, A. Heindl, J. Müller, Int. J. Food Sci. Technol. 46, 333–342 (2011)CrossRefGoogle Scholar
  11. 11.
    V.R. Sagar, P.S. Kumar, J. Food Sci. Technol. 47(1), 15–26 (2010)CrossRefGoogle Scholar
  12. 12.
    A. Reyes, V. Bubnovich, R. Bustos, M. Vásquez, R. Vega, E. Scheuermann, Drying Technol. 28, 1416–1425 (2010)CrossRefGoogle Scholar
  13. 13.
    X. Tang, K. Pikal, Pharm. Res. 21, 191–200 (2004)CrossRefGoogle Scholar
  14. 14.
    W. Wei, C. Mo, C. Guohua, Chinese J. Chem. Eng. 20(3), 551–559 (2012)CrossRefGoogle Scholar
  15. 15.
    C. Ratti, J. Food Eng. 49(4), 311–319 (2001)CrossRefGoogle Scholar
  16. 16.
    K. Abascal, L. Ganora, E. Yarnell, Phytother. Res. 19, 655–660 (2005)CrossRefGoogle Scholar
  17. 17.
    A.M. Ceballos, G.I. Giraldo, C.E. Orrego, J. Food Eng. 111, 360–365 (2012)CrossRefGoogle Scholar
  18. 18.
    C. de Torres, M.C. Díaz-Maroto, I. Hermosín-Gutiérrez, M.S. Pérez-Coello, Anal. Chim. Acta 660, 177–182 (2010)CrossRefGoogle Scholar
  19. 19.
    R. Wu, B. Frei, J. Kennedy, Y. Zhao, LWT-Food Sci. Technol. 43, 1253–1264 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Le Meste, D. Champion, G. Roudaut, G. Blond, D. Simatos, J. Food Sci. 67, 2444–2458 (2002)CrossRefGoogle Scholar
  21. 21.
    S.S. Sablani, K. Al-Belushi, I. Al-Marhubi, R. Al-Belushi, Int. J. Food Prop. 10, 61–71 (2007)CrossRefGoogle Scholar
  22. 22.
    G. Petzold, J.M. Aguilera, Food Biophys. 4, 378–396 (2009)CrossRefGoogle Scholar
  23. 23.
    N. Harnkarnsujarit, S. Charoenrein, Food Res. Int. 44, 3188–3194 (2011)CrossRefGoogle Scholar
  24. 24.
    K.L. White, L.N. Bell, J. Food Sci. 64, 1010–1014 (1999)CrossRefGoogle Scholar
  25. 25.
    M.S. Rahman, Drying Technol. 19(1), 1–13 (2001)CrossRefGoogle Scholar
  26. 26.
    V.P. Oikonomopoulou, M.K. Krokida, V.T. Karathanos, Procedia Food Sci. 1, 647–654 (2001)CrossRefGoogle Scholar
  27. 27.
    M. Araya-Farias, O. Macaigne, C. Ratti, Drying Technol. 32, 813–819 (2014)CrossRefGoogle Scholar
  28. 28.
    D. Argyropoulos, J. Müller, J. Appl. Res. Med. Aromat. Plants 1(2), 59–69 (2014)Google Scholar
  29. 29.
    S. Georgé, F. Tourniaire, H. Gautier, P. Goupy, E. Rock, C. Caris-Veyrat, Food Chem. 124(4), 1603–1611 (2011)CrossRefGoogle Scholar
  30. 30.
    A. Ciurzyńska, A. Lenart, K.J. Gręda, LWT-Food Sci. Technol. 59(2), 1075–1081 (2014)CrossRefGoogle Scholar
  31. 31.
    P. Sette, D. Salvatori, C. Schebor, Food Bioprod. Process 100, 156–171 (2016)CrossRefGoogle Scholar
  32. 32.
    Z. Yan, M.J. Sousa-Gallagher, F.A. Oliveira, J. Food Eng. 84(3), 430–440 (2008)CrossRefGoogle Scholar
  33. 33.
    R.M. Schweiggert, C.B. Steingass, E. Mora, P. Esquivel, R. Carle, Food Res. Int. 44, 1373–1380 (2001)CrossRefGoogle Scholar
  34. 34.
    E.H.K. Ikram, H.E. Khoo, A.M.M. Jalil, A. Ismail, S. Idris, A. Azlan, H.S.M. Nazri, N.A.M. Diton, R.A.M. Mokhtar, J. Food Compos. Anal. 22(5), 388–393 (2009)CrossRefGoogle Scholar
  35. 35.
    K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, D.H. Byrne, J. Food Compos. Anal. 19, 669–675 (2006)CrossRefGoogle Scholar
  36. 36.
    M.B. Arnao, A. Cano, M. Acosta, Food Chem. 73, 239–244 (2001)CrossRefGoogle Scholar
  37. 37.
    L. Mayor, R. Moreira, A.M. Sereno, J. Food Eng. 103, 29–37 (2001)CrossRefGoogle Scholar
  38. 38.
    I. Luna-Guzman, D.M. Barrett, Postharvest Biol. Technol. 19, 61–72 (2000)CrossRefGoogle Scholar
  39. 39.
    S. Beirão-da-Costa, A. Cardoso, L.L. Martins, J. Empis, M. Moldão-Martins, Food Chem. 108, 191–197 (2008)CrossRefGoogle Scholar
  40. 40.
    H. Qi, W. Hu, A. Jiang, M. Tian, Y. Li, Innov. Food Sci. Emerg. Technol. 12, 62–66 (2001)CrossRefGoogle Scholar
  41. 41.
    C.C. Ferrari, C.I.G.L. Sarantopoulos, S.M. Carmello-Guerreiro, M.D. Hubinger, Food Bioprocess Technol. 6, 80–91 (2013)CrossRefGoogle Scholar
  42. 42.
    M.K. Krokida, V.T. Karathanos, Z.B. Maroulis, J. Food Eng. 35, 369–380 (1998)CrossRefGoogle Scholar
  43. 43.
    D.N. Sila, C. Smout, T.S. Vu, A.M. Van Loey, M. Hendrickx, J. Food Sci. 70, E85–E91 (2005)CrossRefGoogle Scholar
  44. 44.
    D. Rico, A.B. Martın-Diana, J.M. Frıas, J.M. KPaat, G.T.M. Henehan, C. KPary-Ryan, J. Food Eng. 79, 1196–1206 (2007)CrossRefGoogle Scholar
  45. 45.
    N.K. Rastogi, L.T. Nguyen, V.M. Balasubramaniam, J. Food Eng. 88, 541–547 (2008)CrossRefGoogle Scholar
  46. 46.
    A.C.C. Rodrigues, R.L. Cunha, M.D. Hubinger, J. Food Eng. 59, 129–135 (2003)CrossRefGoogle Scholar
  47. 47.
    C. Hammami, F. René, J. Food Eng. 32(2), 133–154 (1997)CrossRefGoogle Scholar
  48. 48.
    S. Rudy, D. Dziki, A. Krzykowski, U. Gawlik-Dziki, R. Polak, R. Różyło, R. Kulig, LWT-Food Sci. Technol. 63(1), 497–503 (2015)CrossRefGoogle Scholar
  49. 49.
    A. Heredia, I. Peinado, C. Barrera, A.A. Grau, J. Food Compos. Anal. 22, 285–294 (2009)Google Scholar
  50. 50.
    P. Udomkun, D. Argyropoulos, M. Nagle, B. Mahayothee, J. Müller, J. Food Eng. 157, 14–23 (2015)CrossRefGoogle Scholar
  51. 51.
    M. González-Fésler, D.M. Salvatori, P. Gómez, S.M. Alzamora, J. Food Eng. 87(3), 323–332 (2008)CrossRefGoogle Scholar
  52. 52.
    A.M. Sereno, R. Moreira, E. Martinez, J. Food Eng. 47, 43–49 (2001)CrossRefGoogle Scholar
  53. 53.
    L.M. Pereira, S.M. Carmello-Guerreiro, H.M.A. Bolini, R.L. Cunha, M.D. Hubinger, J. Sci. Food Agric. 87, 1149–1156 (2007)CrossRefGoogle Scholar
  54. 54.
    A. Wojdylo, A. Figiel, J. Oszmianski, J. Agri. Food Chem. 57, 1337–1343 (2009)CrossRefGoogle Scholar
  55. 55.
    I.F.F. Benzie, J. Strain, Anal. Biochem. 239, 70–76 (1996)CrossRefGoogle Scholar
  56. 56.
    S.F. Sulaiman, N.A.Md. Yusoff, I.M. Eldeen, E.M. Seow, A.A.B. Sajak, Supriatno, K.L. Ooi, J. Food Compos. Anal. 24, 1–10 (2011)Google Scholar
  57. 57.
    S.Y. Leong, I. Oey, Food Chem. 133, 1577–1587 (2012)CrossRefGoogle Scholar
  58. 58.
    I. Guiamba, L. Ahrné, M.A.M. Khan, U. Svanberg, Food Bioprod. Process 98, 320–326 (2016)CrossRefGoogle Scholar
  59. 59.
    J. Shi, M. Le Maguer, M. Bryan, in Functional Foods-Biochemical and Processing Aspects, ed. by J. Shi, G. Mazza, M. Le Maguer (CRC Press, Boca Raton, 2002), pp. 135–168Google Scholar
  60. 60.
    W. Kalt, J. Food Sci. 70(1) (2005)Google Scholar
  61. 61.
    A. Lončarić, A. Pichler, I. Trtinjak, V. Piližota, M. Kopjar, LWT-Food Sci. Technol. 73, 391–396 (2016)CrossRefGoogle Scholar
  62. 62.
    G. Blanda, L. Cerretani, A. Cardinali, S. Barbieri, A. Bendini, G. Lercker, LWT-Food Sci. Technol. 42(1), 30–36 (2009)Google Scholar
  63. 63.
    M. Materska, J. Funct. Foods 7, 269–277 (2014)CrossRefGoogle Scholar
  64. 64.
    C. Chang, H. Lin, C. Chang, Y. Liu, J. Food Eng. 77, 478–485 (2006)CrossRefGoogle Scholar
  65. 65.
    S.U. Lee, J.H. Lee, S.H. Choi, J.S. Lee, M. Ohnisi-Kameyama, N. Kozukue, J. Agric. Food Chem. 56, 8541–8548 (2008)CrossRefGoogle Scholar
  66. 66.
    T. Vashisth, R.K. Singh, R.B. Pegg, LWT-Food Sci. Technol. 44(7), 1649–1657 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.International Institute of Tropical Agriculture (IITA)BujumburaBurundi
  2. 2.Universität Hohenheim, Institute of Agricultural Engineering (440e), Tropics and Subtropics GroupStuttgartGermany
  3. 3.Agricultural Research and Development ProgramCentral State UniversityWilberforceUSA
  4. 4.Department of Food Technology, Faculty of Engineering and Industrial TechnologySilpakorn University, Faculty of Engineering and Industrial Technology, Department of Food TechnologyAmphur MuangThailand
  5. 5.Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture(IITA)Southern Africa Research and Administration Hub (SARAH) CampusLusakaZambia

Personalised recommendations