Advertisement

Production of split table olives of the Cobrançosa cultivar: a kinetic study of the fermentation profile

  • Jessica Prata
  • Tânia Barros
  • Tânia Mateus
  • Célia Quintas
  • Paula Pires-CabralEmail author
Original Paper
  • 56 Downloads

Abstract

The aim of this study was to evaluate the effect of the Cobrançosa cultivar olive ripeness on the physicochemical parameters and model their progression profile throughout the fermentation period. Green and turning color olives undertook fermentation due to fruit and environmental microbiota resulting in final brines with the required acidity values and absence of coliforms, Escherichia coli, Salmonella and Listeria monocytogenes. The Monod model was used to explain the changes of aW, total acidity and total phenolic content in the brines, and the same kinetic with inhibition was fitted to the changes of reducing sugar concentration in the brines. The inverse power model was adjusted to salt content in brines, aW, total acidity, reducing sugars and total phenolic content in the olives. The Naperian logarithmic function was fitted to the changes of the surface color parameter (− a/b) of the fruits. For both olives, the models adjusted to the experimental data were the same, showing a similar trend in the physicochemical profiles, probably due to the previously fruit splitting, which promotes nutrients diffusing into the brines and the influx of salt into the olives during fermentation. However, different model parameters were estimated, depending on the ripeness degree, namely for total acidity, reducing sugars and total phenolic content of the brines, showing lower nutrients diffusion rates from the unripe olive pulp, through the skin into the brine, due to the hardness of the cell wall structures in this maturation stage.

Keywords

Olea europaea Fermentation profile Ripeness degree Cobrançosa cultivar Kinetics Modeling 

References

  1. 1.
    CIHEAM/FAO, Mediterranean food consumption patterns: diet, environment, society, economy and health. A White Paper Priority 5 of Feeding Knowledge Programme, Expo Milan 2015 (CIHEAM-IAMB, Bari/FAO, Rome) (2015)Google Scholar
  2. 2.
    R. Estruch, E. Ros, J. Salas-Salvadó, M.I. Covas, D. Corella, F. Arós, E. Gómez-Gracia, V. Ruiz-Gutiérrez, M. Fiol, J. Lapetra, R.M. Lamuela-Raventos, L. Serra-Majem, X. Pintó, J. Basora, M.A. Muñoz, J.V. Sorli, J.A. Martínez, M.A. Martínez-González, Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 368(14), 1279–1290 (2013).  https://doi.org/10.1056/NEJMoa1200303 CrossRefPubMedGoogle Scholar
  3. 3.
    F. Sofi, R. Abbate, G.F. Gensini, A. Casini, Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am. J. Clin. Nutr. 92, 1189–1196 (2010).  https://doi.org/10.3945/ajcn.2010.29673 CrossRefPubMedGoogle Scholar
  4. 4.
    G. Boskou, F. Salta, S. Chrysostomou, A. Mylona, A. Chiou, N.K. Andrikopoulos, Antioxidant capacity and phenolic profile of table olives from the Greek market. Food Chem. 94, 55–564 (2006).  https://doi.org/10.1016/j.foodchem.2004.12.005 CrossRefGoogle Scholar
  5. 5.
    A.M. Kountouri, A. Mylona, A.C. Kaliora, N.K. Andrikopoulos, Bioavailability of the phenolic compounds of the fruits (drupes) of Olea europaea (olives): impact on plasma antioxidant status in humans. Phytomedicine 14, 659–667 (2007).  https://doi.org/10.1016/j.phymed.2007.06.001 CrossRefPubMedGoogle Scholar
  6. 6.
    A. López, A. Montaňo, P. García, A. Garrido, Fatty acid profile of table olives and its multivariate characterization using unsupervised (PCA) and supervised (DA) chemometrics. J. Agric. Food Chem. 54, 6747–6753 (2006).  https://doi.org/10.1021/jf0612474 CrossRefPubMedGoogle Scholar
  7. 7.
    A. López-López, A. Jiménez-Araujo, P. García-García, A. Garrido-Fernandéz, Multivariate analysis for the evaluation of fiber, sugars, and organic acids in commercial presentations of table olives. J. Agric. Food Chem. 55, 10803–10811 (2007).  https://doi.org/10.1021/jf0720638 CrossRefPubMedGoogle Scholar
  8. 8.
    R.W. Owen, R. Haubner, G. Würtele, W.E. Hull, B. Spiegelhalder, H. Bartsch, Olives and olive oil in cancer prevention. Eur. J. Cancer Prev. 13, 319–326 (2004).  https://doi.org/10.1097/01.cej.0000130221.19480.7e CrossRefPubMedGoogle Scholar
  9. 9.
    J.A. Pereira, A.P.G. Pereira, I.C.F.R. Ferreira, P. Valentão, P.B. Andrade, R. Seabra, L. Estevinho, A. Bento, Table olives from Portugal: phenolic compounds, antioxidante potential, and antimicrobial activity. J. Agric. Food Chem. 54, 8425–8431 (2006).  https://doi.org/10.1021/jf061769j CrossRefPubMedGoogle Scholar
  10. 10.
    C. Romero, A. García, E. Medina, M.V. Ruíz-Merndez, A. Castro, M. Brenes, Triterpenic acids in table olives. Food Chem. 118, 670–674 (2010).  https://doi.org/10.1016/j.foodchem.2009.05.037 CrossRefGoogle Scholar
  11. 11.
    ÖF. Gamli, T. Eker, Determination of harvest time of Gemlik olive cultivars by using physical and chemical properties. Food Measure 11, 2022–2030 (2017).  https://doi.org/10.1007/s11694-017-9585-3 CrossRefGoogle Scholar
  12. 12.
    M. Machado, C. Felizardo, A.A. Fernandes-Silva, F.M. Nunes, A. Barros, Polyphenolic compounds antioxidant activity and L-phenylalanine ammonia-lyase activity during ripening of olive cv ‘‘Cobrançosa’’ under different irrigation regimes. Food Res. Int. 51, 412–421 (2013).  https://doi.org/10.1016/j.foodres.2012.12.056 CrossRefGoogle Scholar
  13. 13.
    I. Mafra, B. Lanza, A. Reis, V. Marsilio, C. Campestre, M. De Angelis, M.A. Coimbra, Effect of ripening on texture, microstructure and cell wall polysaccharide composition of olive fruit (Olea europaea). Physiol. Plant. 111, 439–447 (2001).  https://doi.org/10.1034/j.1399-3054.2001.1110403.x CrossRefPubMedGoogle Scholar
  14. 14.
    R. Malheiro, A. Sousa, S. Casal, A. Bento, J.A. Pereira, Cultivar effect on the phenolic composition and antioxidant potential of stoned table olives. Food Chem. Toxicol. 49, 450–457 (2011).  https://doi.org/10.1016/j.fct.2010.11.023 CrossRefPubMedGoogle Scholar
  15. 15.
    V. Marsilio, C. Campestre, B. Lanza, Phenolic compounds change during California-style ripe olives processing. Food Chem. 74, 55–60 (2001).  https://doi.org/10.1016/S0308-8146(00)00338-1 CrossRefGoogle Scholar
  16. 16.
    C. Romero, M. Brenes, P. García, A. García, A. Garrido, Polyphenol changes during fermentation of naturally black olives. J. Agric. Food Chem. 52, 1973–1979 (2004).  https://doi.org/10.1021/jf030726p CrossRefPubMedGoogle Scholar
  17. 17.
    D. Ryan, K. Robards, S. Lavee, Changes in phenolic content of olive during maturation. Int. J. Food Sci. Technol. 34, 265–274 (1999).  https://doi.org/10.1046/j.1365-2621.1999.00261.x CrossRefGoogle Scholar
  18. 18.
    C. Saúde, T. Barros, T. Mateus, C. Quintas, P. Pires-Cabral, Effect of chloride salts on the sensory and nutritional properties of cracked table olives of the Maçanilha Algarvia cultivar. Food Biosci. 19, 73–79 (2017).  https://doi.org/10.1016/j.fbio.2017.06.001 CrossRefGoogle Scholar
  19. 19.
    C. Sousa, I. Gouvinhas, D. Barreira, M.T. Carvalho, A. Vilela, J. Lopes, P. Martins-Lopes, A.I. Barros, ‘Cobrançosa’ olive oil and drupe: chemical composition at two ripening stages. J. Am. Oil. Chem. Soc. 91, 599–611 (2014).  https://doi.org/10.1007/s11746-013-2406-x CrossRefGoogle Scholar
  20. 20.
    A.F. Vinha, F. Ferreres, B.M. Silva, P. Valentão, A. Gonçalves, J.A. Pereira, M.B. Oliveira, R.M. Seabra, P.B. Andrade, Phenolic profiles of Portuguese olive fruits (Olea europaea L.): influences of cultivar and geographical origin. Food Chem. 89, 561–568 (2005).  https://doi.org/10.1016/j.foodchem.2004.03.012 CrossRefGoogle Scholar
  21. 21.
    INE, I. P. Statistics Portugal. Statistical Yearbook of Algarve Region 2015 (2015)Google Scholar
  22. 22.
    M.J. Fernández-Díez, R. Castro, A. Garrido, F.G. Cancho, F.G. Pellissó, M.N. Vega, A.H. Moreno, I.M. Mosquera, L. Rejano, M.C.D. Quintana, P.S. Roldán, P. Garcia, A. Castro, Biotecnología de la Aceituna de Mesa, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Madrid (1985).Google Scholar
  23. 23.
    G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959).  https://doi.org/10.1021/ac60147a030 CrossRefGoogle Scholar
  24. 24.
    V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods Enzymol. 299, 152–178 (1999).  https://doi.org/10.1016/S0076-6879(99)99017-1 CrossRefGoogle Scholar
  25. 25.
    D. Pearson, Laboratory techniques for food analysis (Técnicas de Laboratorio para el Análisis de Alimentos), (Editorial Acribia, Zaragoza, 1976)Google Scholar
  26. 26.
    R.D. González, L.M. Tamagnini, P.D. Olmos, G.B. Sousa, Evaluation of a chromogenic medium for total coliforms and Escherichia coli determination in ready-to-eat foods. Food Microbiol. 20, 601–604 (2003).  https://doi.org/10.1016/S0740-0020(02)00178-8 CrossRefGoogle Scholar
  27. 27.
    V. Demir, T. Gunhan, A.K. Yagcioglu, Mathematical modelling of convection drying of green table olives. Biosyst. Eng. 98, 47–53 (2007).  https://doi.org/10.1016/j.biosystemeng.2007.06.011 CrossRefGoogle Scholar
  28. 28.
    C. Grosso, S. Ferreira-Dias, P. Pires-Cabral, Modelling and optimization of ethyl butyrate production catalysed by Rhizopus oryzae lipase. J. Food Eng. 115, 475–480 (2013).  https://doi.org/10.1016/j.jfoodeng.2012.08.001 CrossRefGoogle Scholar
  29. 29.
    V. Romero-Gil, J. Bautista-Galego, F. Rodríguez-Gómez, P. García-García, R. Jiménez-Díaz, A. Garrído-Fernández, F.N. Arroyo-López, Evaluating the individual effects of temperature and salt on table olive related microorganisms. Food Microbiol. 33, 178–184 (2013).  https://doi.org/10.1016/j.fm.2012.09.015 CrossRefPubMedGoogle Scholar
  30. 30.
    S. Weisberg, Applied Linear Regression (Wiley, New York, 1985), pp. 217–218Google Scholar
  31. 31.
    International Olive Oil Council, Trade Standard Applying to Table Olives, (International Olive Council, Madrid, 2004)Google Scholar
  32. 32.
    V. Marsilio, F. Russi, E. Lannucci, N. Sabatini, Effects of alkali neutralization with CO2 on fermentation, chemical parameters and sensory characteristics in Spanish-style green olives (Olea europaea L.). LWT-Food Sci. Technol. 41, 796–802 (2008).  https://doi.org/10.1016/j.lwt.2007.05.013 CrossRefGoogle Scholar
  33. 33.
    J. Bautista-Gallego, F.N. Arroyo-López, M.C. Durán-Quitana, A. Garrido-Fernandéz, Fermentation profiles of Manzanilla-Aloreña cracked green table olives in different chloride salt mixtures. Food Microbiol. 27, 403–412 (2010).  https://doi.org/10.1016/j.fm.2009.11.015 CrossRefPubMedGoogle Scholar
  34. 34.
    M. Alves, E. Esteves, C. Quintas, Effect of preservatives and acidifying agents on the shelf life of packed cracked green table olives from Maçanilha cultivar. Food Packag. Shelf. Life 5, 32–40 (2015).  https://doi.org/10.1016/j.fpsl.2015.05.001 CrossRefGoogle Scholar
  35. 35.
    F.N. Arroyo-López, A. Querol, J. Bautista-Galego, A. Garrido-Fernández, Role of yeasts in table olive production. Int. J. Food Microbiol. 128, 189–196 (2008)CrossRefGoogle Scholar
  36. 36.
    S. Kailis, D. Harris, Producing Table Olives (Landlinks Press, Collingwood, 2007)Google Scholar
  37. 37.
    I. Mafra, A.S. Barros, C. Nunes, R. Vitorino, J. Saraiva, A. Smith, K. Waldron, I. Delgadillo, M.A. Coimbra, Ripening-related changes in the cells of olive pulp (Olea europaea) of consecutive harvests. J. Sci. Food Agric. 86, 988–998 (2006).  https://doi.org/10.1002/jsfa.2447 CrossRefGoogle Scholar
  38. 38.
    S. Silva, B. Sepodes, J. Rocha, R. Direito, A. Fernandes, D. Brites, M. Freitas, E. Fernandes, M.R. Bronze, M.E. Figueira, Protective effects of hydoxytyrosol-supplemented refined olive oil in animal models of acute inflammation and rheumatoid arthristis. J. Nutr. Biochem. 26(4), 360–368 (2015).  https://doi.org/10.1016/j.jnutbio.2014.11.011 CrossRefPubMedGoogle Scholar
  39. 39.
    N. Ben Youssef, W. Zarrouk, A. Carrasco-Pancorbo, Y. Ouni, A. Segura-Carretero, A. Fernández-Gutiérrez, D. Daoud, M. Zarrouk, Effect of olive ripeness on chemical properties and phenolic composition of Chetoui virgin olive oil. J Sci Food Agric 90(2), 199–204 (2010).  https://doi.org/10.1002/jsfa.3784 CrossRefPubMedGoogle Scholar
  40. 40.
    J. Bautista-Gallego, F.N. Arroyo-López, M.C. Durán-Quitana, A. Garrido-Fernandéz, Effect of chloride salt mixtures on selected attributes and mineral content of fermented cracked Aloreña olives. LWT-Food Sci Technol 44, 120–129 (2011).  https://doi.org/10.1016/j.lwt.2010.06.027 CrossRefGoogle Scholar
  41. 41.
    T. Mateus, D. Santo, C. Saúde, P. Pires-Cabral, C. Quintas, The effect of NaCl reduction in the microbiological quality of cracked green table olives of the Maçanilha Algarvia cultivar. Int. J. Food Microbiol. 218, 57–65 (2016).  https://doi.org/10.1016/j.ijfoodmicro.2015.11.008 CrossRefPubMedGoogle Scholar
  42. 42.
    European Commission Regulation, Regulation 2073/2005. EU Off. J. 1–26 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidade do Algarve, Instituto Superior de EngenhariaFaroPortugal
  2. 2.Centre for Mediterranean Bioresources and Food (MeditBio)Universidade do AlgarveFaroPortugal

Personalised recommendations