Advertisement

Plinia trunciflora and Plinia cauliflora: two species rich in bioactive compounds, terpenes, and minerals

  • Aline Priscilla Gomes da Silva
  • Poliana Cristina Spricigo
  • Eduardo Purgatto
  • Severino Matias de Alencar
  • Angelo Pedro JacominoEmail author
Original Paper
  • 84 Downloads

Abstract

Jabuticaba is a native fruit from the Brazilian Atlantic Forest. The fruit is commercialized in Brazil and in the world in its fresh and processed forms due to its attractive colour and flavour. The objective of this study was to quantify the chemical properties and bioactive compounds in fruits from two jabuticaba species that have rarely been study, ‘Pêndula’ (Plinia trunciflora) and ‘Ponhema’ (Plinia cauliflora). Extracts of jabuticaba fruits species ‘Pêndula’ and ‘Ponhema’ were evaluated by SPME combined with GC–MS for volatile compounds. Organic acids, sugars, and ascorbic acid were determined by HPLC. Minerals were determined by ICP-OES, phenolic content, antioxidant capacity (DPPH and ORAC assay), and centesimal composition were assayed on the same jabuticabas extracts. Jabuticaba ‘Pêndula’ presented higher levels of ash (4.26 g 100 g−1), lipids (1.21 g 100 g−1), proteins (5.07 g 100 g−1), dietary fibers (29.73 g 100 g−1) and minerals (1122.91 mg 100 g−1). Jabuticaba ‘Ponhema’ expressed higher amounts of total monomeric anthocyanins (TMA) (0.10 g 100 g−1), total flavonoids (0.08 g 100 g−1) and total phenolic compounds (0.43 g 100 g−1). These two species had high antioxidant capacity (5.73–9.12 mmol trolox 100 g−1 by DPPH method and 23.54–71.16 mmol trolox 100 g−1 by ORAC method). There were found 37 new compounds, mainly terpenes (67%), that have not been previously described in jabuticaba fruit. Jabuticaba ‘Pêndula’ and ‘Ponhema’ fruits can be beneficial to the human diet and potentially serve as raw material for industrial purposes.

Keywords

Brazilian Atlantic Forest Composition Dietary fiber HPLC SPME-CG 

Notes

Acknowledgements

The authors thank grants #2014/13473-7 and #2013/07914-8, São Paulo Research Foundation (FAPESP), Coordination for the Improvement of Higher Education Personnel (CAPES), and the National Council for Scientific and Technological Development (CNPq, research productivity grant #308521/2015-3 and the research funding grant #458123/2014-5), which provided financial support and a scholarship for the development of this study. The authors are also grateful to Sérgio Sartori (Estância das Frutas), fruit farmer of Rio Claro, São Paulo, for providing the jabuticaba fruits used in the study.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to report.

References

  1. 1.
    M.R. Alezandro, P. Dubé, Y. Desjardins, F.M. Lajolo, M.I. Genovese, Food Res. Int. (2013).  https://doi.org/10.1016/j.foodres.2013.07.018 CrossRefGoogle Scholar
  2. 2.
    H. Lorenzi, S.F. Sartori, L.B. Bacher, M.T.C. Lacerda, Frutas Brasileiras e Exóticas Cultivadas, 2th edn. (Plantarum, Nova Odessa, 2006), p. 650Google Scholar
  3. 3.
    M. Sobral, Bol. Mus. Bot. Curitiba 63, 1 (1985)Google Scholar
  4. 4.
    I. Citadin, M.A. Danner, S.A.Z. Sasso, Rev. Bras. Frutic. 32, 571 (2010)CrossRefGoogle Scholar
  5. 5.
    A.J.B. Lima, A.D. Corrêa, A.P.C. Alves, C.M.P. Abreu, A.M. Dantas-Barros, Arch. Latinoam. Nutr. 58, 416 (2008)Google Scholar
  6. 6.
    I.A. Neri-Numa, R.A.S. Sancho, A.P.A. Pereira, G.M. Pastore, Food Res. Int. (2017).  https://doi.org/10.1016/j.foodres.2017.10.053 CrossRefPubMedGoogle Scholar
  7. 7.
    L.T. Abe, F.M. Lajolo, M.I. Genovese, J. Sci. Food. Agric. (2012).  https://doi.org/10.1002/jsfa.5531 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    A.G.V. Costa, D.F. Garcia-Diaz, P. Jimenez, P.I. Silva, J. Funct. Foods (2013).  https://doi.org/10.1016/j.jff.2013.01.029 CrossRefGoogle Scholar
  9. 9.
    C.W.I. Haminiuk, M.S.V. Plata-Oviedo, A.R. Guedes, A.P. Stafussa, E. Bona, S.T. Carpes, Int. J. Food Sci. Technol. (2011).  https://doi.org/10.1111/j.1365-2621.2011.02653.x CrossRefGoogle Scholar
  10. 10.
    A.V. Leite-Legatti, ÂG. Batista, N.R.V. Dragano, A.C. Marques, L.G. Malta, M. Riccio, M.N. Eberlin, A.R.T. Machado, L.B. Carvalho-Silva, A.L.T.G. Ruiz, J.E. Carvalho, G.M. Pastore, M.R. Maróstica Júnior, Food Res. Int. (2012).  https://doi.org/10.1016/j.foodres.2012.07.044 CrossRefGoogle Scholar
  11. 11.
    S.K.T. Seraglio, M. Schulz, P. Nehring, F. Della Betta, A.C. Valese, H. Daguer, L. V.Gonzaga, R. Fett, A.C.O. Costa, Food. Chem. (2018).  https://doi.org/10.1016/j.foodchem.2017.06.118 CrossRefPubMedGoogle Scholar
  12. 12.
    B.R. Cordenunsi, T.M. Shiga, F. Lajolo, Carbohydr. Polym. (2008).  https://doi.org/10.1016/j.carbpol.2007.05.009 CrossRefGoogle Scholar
  13. 13.
    A. Amorós, P. Zapata, M.T. Pretel, M.A. Botella, M. Serrano, Rev. Agroquim. Technol. (2003).  https://doi.org/10.1177/108201303033976 CrossRefGoogle Scholar
  14. 14.
    AOAC, Official Methods of Analysis, 18th edn. (Association of Official Analytical Chemist, Gaithersburg, 2005)Google Scholar
  15. 15.
    AOCS, Official Methods and Recommended Practices of the American Oil Chemists’ Society, 5th edn. (Association of Official Analytical Oil Chemists’, Champaign, 2003)Google Scholar
  16. 16.
    E. Malavolta, G.C. Vitti, S.A. Oliveira, Avaliação do Estado Nutricional das Plantas: Princípios e Aplicações, 2th edn. (Potafós, Piracicaba, 1997), pp. 231–305Google Scholar
  17. 17.
    B.L. Gomes, J.P. Fabi, E. Purgatto, Food Res. Int. (2016).  https://doi.org/10.1016/j.foodres.2016.09.025 CrossRefPubMedGoogle Scholar
  18. 18.
    S.A. Mjos, S. Meier, S. Boitsov, J. Chromatogr. A (2006).  https://doi.org/10.1016/j.chroma.2006.05.002 CrossRefPubMedGoogle Scholar
  19. 19.
    T. Pasternak, G. Potters, R. Caubergs, M.A. Jansen, J. Exp. Bot. (2005).  https://doi.org/10.1093/jxb/eri196 CrossRefPubMedGoogle Scholar
  20. 20.
    M.M. Giusti, R.E. Wrolstad, Characterization and measurement of anthocyanins by UV-Visible spectroscopy, In Current Protocols in Food Analytical Chemistry, ed. by R.E. Wrostald (Wiley, New York, 2001), pp. 1–13,  https://doi.org/10.1002/0471142913.faf0102s00 CrossRefGoogle Scholar
  21. 21.
    J. Zhishen, T. Mengcheng, W. Jianming, Food. Chem. (1999).  https://doi.org/10.1016/S0308-8146(98)00102-2 CrossRefGoogle Scholar
  22. 22.
    R.G. Woisky, A. Salatino, J. Apic. Res. (1998).  https://doi.org/10.1080/00218839.1998.11100961 CrossRefGoogle Scholar
  23. 23.
    A.P. Tiveron, P.S. Melo, K.B. Bergamaschi, T.M. Vieira, M.A. Regitano-d’Arce, S.M. Alencar, Int. J. Mol.Sci. (2012).  https://doi.org/10.3390/ijms13078943 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    P.S. Melo, A.P. Massarioli, C. Denny, L.F. dos Santos, M. Franchin, G.E. Pereira, T.M.F.S. Vieira, P.L. Rosalen, S.M. Alencar, Food.Chem. (2015).  https://doi.org/10.1016/j.foodchem.2015.02.087 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    L.D. Pereira, J.M.G. Barbosa, A.J.R. Silva, P.H. Ferri, S.C. Santos, J. Agric. Food Chem. (2017).  https://doi.org/10.1021/acs.jafc.6b02929 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    G.N. Jham, S.A. Fernandes, C.F. Garcia, D. Palmquist, Quim. Nova (2007).  https://doi.org/10.1590/S0100-40422007000700006 CrossRefGoogle Scholar
  27. 27.
    A.J.B. Lima, A.D. Corrêa, A.M. Dantas-Barros, D.L. Nelson, A.C.L. Amorim, Rev. Bras. Frutic. (2011).  https://doi.org/10.1590/S0100-29452011000200026 CrossRefGoogle Scholar
  28. 28.
    S. Fuller, E. Beck, H. Salman, L. Tapsell, Plant. Foods. Hum. Nutr. (2016).  https://doi.org/10.1007/s11130-016-0529-6 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    IOM, Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes. (National Academy Press, Washington, DC, 1999–2011)Google Scholar
  30. 30.
    United States Department of Agriculture, Agricultural Research Service [homepage on the Internet]. USDA National Nutrient Database for Standard Reference; 2018 updated 2018 April 17; cited 2018 Jun 20]. http://ndb.nal.usda.gov/ndb/nutrients/index
  31. 31.
  32. 32.
    M. Vizzotto, E.D.S. Pereira, L.A.S.D. Castro, C.D.O. Raphaelli, A.C. Krolow, Braz. J. Food Technol. (2018).  https://doi.org/10.1590/1981-6723.17516 CrossRefGoogle Scholar
  33. 33.
    M. Lucarini, R. Canali, M. Cappelloni, G. Di Lullo, G. Lombardi-Boccia, Food Chem. (1999).  https://doi.org/10.1016/S0308-8146(98)00159-9 CrossRefGoogle Scholar
  34. 34.
    E.M. Balk, G.P. Adam, V.N. Langberg, A. Earley, P. Clark, P.R. Ebeling, A. Mithal, R. Rizzoli, C.A.F. Zerbini, D.D. Pierroz, B. Dawson-Hughes, Osteoporos. Int. (2017).  https://doi.org/10.1007/s00198-017-4230-x CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    S.M.T. Gharibzahedi, S.M. Jafari, Trends Food Sci. Technol. (2017).  https://doi.org/10.1016/j.tifs.2017.02.017 CrossRefGoogle Scholar
  36. 36.
    I. Plagemann, U. Krings, R.G. Berger, M.R. Marostica, Jr, J. Essent. Oil Res. (2012).  https://doi.org/10.1080/10412905.2012.645651 CrossRefGoogle Scholar
  37. 37.
    K.S. Cho, Y.R. Lim, K. Lee, J. Lee, J.H. Lee, I.S. Lee, Toxicol. Res. (2017).  https://doi.org/10.5487/TR.2017.33.2.097 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    G.A. Fortes, S.S. Naves, F.F. Godoi, A.R. Duarte, P.H. Ferri, S.C. Santos, Am. J. Food. Technol. (2011).  https://doi.org/10.3923/ajft.2011.974.984 CrossRefGoogle Scholar
  39. 39.
    A.R. Duarte, S.C. Santos, J.C. Seraphin, P.H. Ferri, J. Braz. Chem. Soc. (2010).  https://doi.org/10.1590/S0103-50532010000900011 CrossRefGoogle Scholar
  40. 40.
    W.F. Duarte, D.R. Dias, J.M. Oliveira, J.A. Teixeira, J.B.D.A. Silva, R.F. Schwan, LWT-Food. Sci. Technol. (2010).  https://doi.org/10.1016/j.lwt.2010.03.010 CrossRefGoogle Scholar
  41. 41.
    K.O.P. Inada, A.A. Oliveira, T.B. Revorêdo, A.B.N. Martins, E.C.Q. Lacerda, A.S. Freire, B.F. Braz, R.E. Santelli, A.G. Torres, D. Perrone, M.C. Monteiro, J. Funct. Foods (2015).  https://doi.org/10.1016/j.jff.2015.06.002 CrossRefGoogle Scholar
  42. 42.
    M. Schulz, G.D.S.C. Borges, L.V. Gonzaga, S.K.T. Seraglio, I.S. Olivo, M.S. Azevedo, P. Nehring, J.S. Gois, T.S. Almeida, L. .Vitali, D.A. Spudeit, G.A. Micke, D.L.G. Borges, R. Fett, Food Res. Int. (2015).  https://doi.org/10.1016/j.foodres.2015.08.006 CrossRefGoogle Scholar
  43. 43.
    V.R. de Souza, P.A.P. Pereira, T.L.T. da Silva, L.C.O. Lima, R. Pio, F. Queiroz, Food. Chem. (2014).  https://doi.org/10.1016/j.foodchem.2014.01.125 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Crop Science Department, “Luiz de Queiroz” College of AgricultureUniversity of São PauloPiracicabaBrazil
  2. 2.Department of Food and Experimental Nutrition, NAPAN/FoRC - Food Research CenterUniversity of São PauloButantãBrazil
  3. 3.Department of Agri-Food Industry, Food and Nutrition, “Luiz de Queiroz” College of AgricultureUniversity of São PauloPiracicabaBrazil

Personalised recommendations