Advertisement

Microencapsulation of blue maize (Zea mays L.) polyphenols in two matrices: their stability during storage and in vitro digestion release

  • Jacqueline Ruiz Canizales
  • José Basilio Heredia
  • J. Abraham Domínguez Avila
  • Tomás J. Madera Santana
  • Mónica A. Villegas Ochoa
  • R. Maribel Robles Sánchez
  • Gustavo A. González Aguilar
Original Paper
  • 27 Downloads

Abstract

Blue maize owes its coloration to a high anthocyanin content, and is therefore a promising source of unstable bioactive compounds. Spray-drying microencapsulation (SDM) can maintain the integrity of labile compounds during storage and digestion. We microencapsulated blue maize polyphenols by SDM in two matrices, maltodextrin (MD) and maltodextrin-pectin (MP) mixture. Morphology, degradation kinetics during storage and release were analyzed. Particle size ranged from 3 to 5 µm, with spherical morphology and surface depressions. The compounds and antioxidant activity had longer half-life in the MP matrix. Both matrices showed near complete release under simulated digestion (~ 95%), the majority of the compounds in the MP matrix were released during the intestinal phase, while those in the MD matrix were released during the gastric phase. These results suggest that microencapsulating blue maize polyphenols allows their incorporation into other products, and the addition of pectin improves the protective properties of MD, possibly due to its lower reactivity.

Keywords

Anthocyanin Stability Spray-drying Shelf-life In vitro digestion release 

Notes

Acknowledgements

J. Ruiz-Canizales thanks CONACYT for the financial support received to get her Master’s Degree. The authors also thank CIAD Culiacan and CIAD Hermosillo for the assistance received. SEM analysis was performed at LANNBIO CINVESTAV Merida. We are also thankful for the technical assistance provided by Mrs. A. Cristóbal. J. A. Domínguez Avila is grateful to Program Cátedras CONACYT.

Supplementary material

11694_2018_3_MOESM1_ESM.docx (410 kb)
Supplementary material 1 (DOCX 409 KB)

References

  1. 1.
    S. Mora-Rochin, J.A. Gutiérrez-Uribe, S.O. Serna-Saldivar, P. Sánchez-Peña, C. Reyes-Moreno, J. Milán-Carrillo, J. Cereal Sci. 52, 502–508 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Mora-Rochin, N. Gaxiola-Cuevas, J.A. Gutierrez-Uribe, J. Milan-Carrillo, E.M. Milan-Noris, C. Reyes-Moreno, S.O. Serna-Saldivar, E.O. Cuevas-Rodriguez, LWT Food Sci. Technol. 68, 563–569 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Leopoldini, N. Russo, M. Toscano, Food Chem. 125, 288–306 (2011)CrossRefGoogle Scholar
  4. 4.
    R. Santiago-Adame, L. Medina-Torres, J.A. Gallegos-Infante, F. Calderas, R.F. Gonzalez-Laredo, N.E. Rocha-Guzman, L.A. Ochoa-Martinez, M.J. Bernad-Bernad, LWT Food Sci. Technol. 64, 571–577 (2015)CrossRefGoogle Scholar
  5. 5.
    S. Saikia, N.K. Mahnot, C.L. Mahanta, Food Chem. 171, 144–152 (2015)CrossRefPubMedGoogle Scholar
  6. 6.
    D.A. Pai, V.R. Vangala, J.W. Ng, W.K. Ng, R.B.H. Tan, J. Food Eng. 161, 68–74 (2015)CrossRefGoogle Scholar
  7. 7.
    B. Min, O.K. Koo, S.H. Park, N. Jarvis, S.C. Ricke, P.G. Crandall, S.-O. Lee, Food Nut. Sci. 06, 12 (2015)Google Scholar
  8. 8.
    A. Tolun, Z. Altintas, N. Artik, J. Biotechnol. 239, 23–33 (2016)CrossRefPubMedGoogle Scholar
  9. 9.
    M. Urias-Peraldí, J.A. Gutiérrez-Uribe, R.E. Preciado-Ortiz, A.S. Cruz-Morales, S.O. Serna-Saldívar, S. García-Lara, Field Crops Res. 141, 69–76 (2013)CrossRefGoogle Scholar
  10. 10.
    J. Villela-Castrejón, B.A. Acosta-Estrada, J.A. Gutiérrez-Uribe, J Food Sci. 82, 1726–1734 (2017)CrossRefPubMedGoogle Scholar
  11. 11.
    A.O.A.C., Official Methods of Analysis Association of Official Analytical Chemists International, 16th edn, (A.O.A.C. Press, Rockville, 1995)Google Scholar
  12. 12.
    Z. Fang, B. Bhandari, Food Chem 129, 1139–1147 (2011)CrossRefPubMedGoogle Scholar
  13. 13.
    V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Methods Enzymol 299, 152–178 (1999)CrossRefGoogle Scholar
  14. 14.
    F. Lao, M.M. Giusti, Food Chem 227, 376–382 (2017)CrossRefPubMedGoogle Scholar
  15. 15.
    I.F.F. Benzie, J.J. Strain, Anal. Biochem. 239, 70–76 (1996)CrossRefPubMedGoogle Scholar
  16. 16.
    B. Ou, M. Hampsch-Woodill, R.L. Prior, J. Agric. Food Chem. 49, 4619–4626 (2001)CrossRefPubMedGoogle Scholar
  17. 17.
    L.D. Daza, A. Fujita, C.S. Fávaro-Trindade, J.N. Rodrigues-Ract, D. Granato, M.I. Genovese, Food Bioprod. Process 97, 20–29 (2016)CrossRefGoogle Scholar
  18. 18.
    F. Saura-Calixto, A. Garcia-Alonso, I. Goni, L. Bravo, J. Agr. Food Chem. 48, 3342–3347 (2000)CrossRefGoogle Scholar
  19. 19.
    F.J. Blancas-Benitez, J. Pérez-Jiménez, E. Montalvo-González, G.A. González-Aguilar, S.G. Sáyago-Ayerdi, J. Funct. Foods 43, 139–145 (2018)CrossRefGoogle Scholar
  20. 20.
    L.X. Lopez-Martinez, R.M. Oliart-Ros, G. Valerio-Alfaro, C.-H. Lee, K.L. Parkin, H.S. Garcia, LWT Food Sci. Technol. 42, 1187–1192 (2009)CrossRefGoogle Scholar
  21. 21.
    D.A. Urias-Lugo, J.B. Heredia, M.D. Muy-Rangel, J.B. Valdez-Torres, S.O. Serna-Saldívar, J.A. Gutiérrez-Uribe, Plant Foods Hum. Nutr. 70, 193–199 (2015)CrossRefPubMedGoogle Scholar
  22. 22.
    M.J. Anttonen, R.O. Karjalainen, J. Food Compos. Anal. 18, 759–769 (2005)CrossRefGoogle Scholar
  23. 23.
    D.Del Pozo-Insfran, C.H. Brenes, S.O. Serna Saldivar, S.T. Talcott, Food Res. Int. 39, 696–703 (2006)CrossRefGoogle Scholar
  24. 24.
    R. Apak, M. Ozyurek, K. Guclu, E. Capanoglu, J. Agr. Food Chem. 64, 1028–1045 (2016)CrossRefGoogle Scholar
  25. 25.
    Z. Peng, J. Li, Y. Guan, G. Zhao, LWT Food Sci. Technol. 51, 348–355 (2013)CrossRefGoogle Scholar
  26. 26.
    T. Laokuldilok, N. Kanha, LWT Food Sci. Technol. 64, 405–411 (2015)CrossRefGoogle Scholar
  27. 27.
    C.A. Nayak, N.K. Rastogi, Dry Technol 28, 1396–1404 (2010)CrossRefGoogle Scholar
  28. 28.
    A.C.P. Souza, P.D. Gurak, L.D.F. Marczak, Food Bioprod. Process 102, 186–194 (2017)CrossRefGoogle Scholar
  29. 29.
    S.S. Vidović, J.Z. Vladić, ŽG. Vaštag, Z.P. Zeković, L.M. Popović, Powder Technol. 258, 209–215 (2014)CrossRefGoogle Scholar
  30. 30.
    T. Klein, R. Longhini, M.L. Bruschi, J.C.P. de Mello, Rev. Bras Farmacogn 25, 292–300 (2015)CrossRefGoogle Scholar
  31. 31.
    F. Sansone, T. Mencherini, P. Picerno, M. d’Amore, R.P. Aquino, M.R. Lauro, J. Food Eng. 105, 468–476 (2011)CrossRefGoogle Scholar
  32. 32.
    D.P.S. Oberoi, D.S. Sogi, J. Food Eng. 165, 172–178 (2015)CrossRefGoogle Scholar
  33. 33.
    S.M. Jafari, M. Ghalegi Ghalenoei, D. Dehnad, Powder Technol. 311, 59–65 (2017)CrossRefGoogle Scholar
  34. 34.
    K. Anekella, V. Orsat, LWT-Food Sci. Technol. 50, 17–24 (2013)CrossRefGoogle Scholar
  35. 35.
    C. Chranioti, S. Chanioti, C. Tzia, Food Chem. 190, 1151–1158 (2016)CrossRefPubMedGoogle Scholar
  36. 36.
    L. Mäkilä, O. Laaksonen, H. Kallio, B. Yang, Food Chem. 221, 422–430 (2017)CrossRefPubMedGoogle Scholar
  37. 37.
    S. Akhavan Mahdavi, S.M. Jafari, E. Assadpour, M. Ghorbani, J. Food Eng. 181, 59–66 (2016)CrossRefGoogle Scholar
  38. 38.
    F.P. Flores, R.K. Singh, F. Kong, J. Food Eng. 137, 1–6 (2014)CrossRefGoogle Scholar
  39. 39.
    U. Einhorn-Stoll, Food Hydrocoll. 78, 109–119 (2018)CrossRefGoogle Scholar
  40. 40.
    P. Sriamornsak, Silpakorn Univ. Int. J. 3, 206–228 (2003)Google Scholar
  41. 41.
    S.Y. Chan, W.S. Choo, D.J. Young, X.J. Loh, Carbohydr. Polym. 161, 118–139 (2017)CrossRefPubMedGoogle Scholar
  42. 42.
    B. He, J. Ge, P. Yue, X. Yue, R. Fu, J. Liang, X. Gao, Food Chem. 221, 1671–1677 (2017)CrossRefPubMedGoogle Scholar
  43. 43.
    F.P. Flores, R.K. Singh, W.L. Kerr, D.R. Phillips, F. Kong, Food Chem. 168, 225–232 (2015)CrossRefPubMedGoogle Scholar
  44. 44.
    D. Luna-Vital, Q. Li, L. West, M. West, E.G. de Mejia, Food Chem. 232, 639–647 (2017)CrossRefPubMedGoogle Scholar
  45. 45.
    I. Fernandes, A. Faria, C. Calhau, V. de Freitas, N. Mateus, J. Funct. Foods 7, 54–66 (2014)CrossRefGoogle Scholar
  46. 46.
    A. Padayachee, G. Netzel, M. Netzel, L. Day, D. Zabaras, D. Mikkelsen, M.J. Gidley, Food Chem. 135, 2287–2292 (2012)CrossRefPubMedGoogle Scholar
  47. 47.
    S. Berg, M. Bretz, E.M. Hubbermann, K. Schwarz, J. Food Eng. 108, 158–165 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jacqueline Ruiz Canizales
    • 1
    • 2
  • José Basilio Heredia
    • 1
  • J. Abraham Domínguez Avila
    • 2
  • Tomás J. Madera Santana
    • 2
  • Mónica A. Villegas Ochoa
    • 2
  • R. Maribel Robles Sánchez
    • 3
  • Gustavo A. González Aguilar
    • 2
  1. 1.Ciencia y Tecnología de Alimentos, Centro de Investigación en Alimentación y Desarrollo, A. C.CuliacánMexico
  2. 2.Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C.HermosilloMexico
  3. 3.Departamento de Investigación y Posgrado en AlimentosUniversidad de SonoraHermosilloMexico

Personalised recommendations