Advertisement

Effect of gamma irradiation and microwave heating treatments on microbial load and antioxidant potentials in cinnamon, fennel and hot pepper

  • Amro B. Hassan
  • Salma M. Ahmed
  • Khitma A. Sir Elkhatim
  • Tilal S. Abdelhalim
  • Samson O. Fawale
  • Oladipupo Q. Adiamo
  • Isam A. Mohamed AhmedEmail author
Original Paper
  • 29 Downloads

Abstract

This study was carried out to investigate the effect of gamma irradiation (5 and 10 kGy) and microwave treatments (500 W for 45 and 90 s) on the microbial load (bacterial and fungal counts), total phenolics (TPC), total flavonoids (TFC) and antioxidant activity of cinnamon, fennel and hot pepper. Both treatments reduced the total counts of bacteria and fungi in the three spices (P < 0.05). Gamma irradiation at the applied doses reduced TPC in hot pepper, TFC and antioxidant activity in all spices, while it increased TPC in cinnamon and fennel at 10 kGy (P < 0.05). Microwave treatment also reduced the TPC in hot pepper, TFC in cinnamon and fennel, and antioxidant activity in all spices, whereas it increased TPC in cinnamon (P < 0.05). Thus, compositional differences should be considered when treating spices with gamma rays and microwave to avoid losses in antioxidant power of these important phytochemicals.

Keywords

Antioxidants Gamma irradiation Microbial load Microwave Spices 

Notes

Compliance with ethical standards

Conflict of interest

All authors have no conflicts of interest to declare.

References

  1. 1.
    A. Chatterjee, S.C. Pakrashi, Treatise on Indian Medicinal Plants. Ayurveda Books, Vedic Books (Publications & Information directorate, New Delhi, 5 1997)Google Scholar
  2. 2.
    B.H. Ali, G. Blunden, Pharmacological and toxicological properties of Nigella sativa. Phytother. Res. 17(4), 299–305 (2003)CrossRefGoogle Scholar
  3. 3.
    M. Gupta, Pharmacological properties and traditional therapeutic uses of important Indian spices: a review. Int. J. Food Prop. 13(5), 1092–1116 (2010)CrossRefGoogle Scholar
  4. 4.
    D.C. Nieman, L. Cialdella-Kam, A.M. Knab, R.A. Shanely, Influence of red pepper spice and turmeric on inflammation and oxidative stress biomarkers in overweight females: a metabolomics approach. Plant Foods Hum. Nutr. 67(4), 415–421 (2012)CrossRefGoogle Scholar
  5. 5.
    E.R. Kitazuru, A.V.B. Moreira, J. Mancini-Filho, H. Delincee, A.L.C.H. Villavicencio, Effects of irradiation on natural antioxidants of cinnamon (Cinnamomum zeylanicum N.). Radiat. Phys. Chem. 71, 39–41 (2004)CrossRefGoogle Scholar
  6. 6.
    M. Suhaj, J. Rácová, M. Polovka, V. Brezová, Effect of γ-irradiation on antioxidant activity of black pepper (Piper nigrum L.). Food Chem. 97(4), 696–704 (2006)CrossRefGoogle Scholar
  7. 7.
    V. Chithra, S. Leelamma, Hypolipidemic effect of coriander seeds (Coriandrum sativum): mechanism of action. Plant Foods Hum. Nutr. 51, 167–172 (1997)CrossRefGoogle Scholar
  8. 8.
    T.A. Sokamte, P.D. Mbougueng, N.L. Tatsadjieu, N.M. Sachindra, Phenolic compounds characterization and antioxidant activities of selected spices from Cameroon. South Afr. J. Bot. 121, 7–15 (2019)CrossRefGoogle Scholar
  9. 9.
    F. Shahidi, A. Hossain, Bioactives in spices, and spice oleoresins: phytochemicals and their beneficial effects in food preservation and health promotion. J. Food Bioact. 3, 8–75 (2018)CrossRefGoogle Scholar
  10. 10.
    M.E. Embuscado, Bioactives from spices and herbs. In: L. Melton, F. Shahidi, P. Varelis (eds.), Encyclopedia of Food Chemistry (Elsevier, New York, 3, pp. 497–514, 2019)CrossRefGoogle Scholar
  11. 11.
    L. Eliasson, S. Isaksson, M. Lövenklev, L. Ahrné, A comparative study of infrared and microwave heating for microbial decontamination of paprika powder. Front Microbiol. 6, 1071 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Horváthová, M. Suhaj, M. Polovka, Effect of gamma irradiation on trichromatic values of spices. Chem. Pap. 61(4), 282–285 (2007)CrossRefGoogle Scholar
  13. 13.
    L. Calucci, C. Pinzino, M. Zandomeneghi, A. Capocchi, S. Ghiringhelli, F. Saviozzi et al., Effects of γ-irradiation on the free radical and antioxidant contents in nine aromatic herbs and spices. J. Agric. Food Chem. 51(4), 927–934 (2003)CrossRefGoogle Scholar
  14. 14.
    M.B. Pérez, N.L. Calderon, C.A. Croci, Radiation-induced enhancement of antioxidant activity in extracts of rosemary (Rosmarinus officinalis L.). Food Chem. 104(2), 585–592 (2007)CrossRefGoogle Scholar
  15. 15.
    J.H. Kim, M.H. Shin, Y.J. Hwang, P. Srinivasan, J.K. Kim, H.J. Park et al., Role of gamma irradiation on the natural antioxidants in cumin seeds. Radiat. Phys. Chem. 78(2), 153–157 (2009)CrossRefGoogle Scholar
  16. 16.
    T. Gumus, S. Albayrak, O. Sagdic, M. Arici, Effect of gamma irradiation on total phenolic contents and antioxidant activities of Satureja hortensis, Thymus vulgaris, and Thymbra spicata from Turkey. Int. J. Food Prop. 14(4), 830–839 (2011)CrossRefGoogle Scholar
  17. 17.
    D. Bertelli, M. Plessi, F. Miglietta, Effect of microwaves on volatile compounds in origanum. LWT-Food Sci. Technol. 36(6), 555–560 (2003)CrossRefGoogle Scholar
  18. 18.
    S. Brandstetter, C. Berthold, B. Isnardy, S. Solar, I. Elmadfa, Impact of gamma-irradiation on the antioxidative properties of sage, thyme, and oregano. Food Chem. Toxicol. 47(9), 2230–2235 (2009)CrossRefGoogle Scholar
  19. 19.
    I.R. Kubra, D. Kumar, L. Jagan Mohan Rao, Emerging trends in microwave processing of spices and herbs. Crit. Rev. Food Sci. Nutr. 56(13), 2160–2173 (2016)CrossRefGoogle Scholar
  20. 20.
    P.S. Variyar, C. Bandyopadhyay, P. Thomas, Effect of γ -irradiation on the phenolic acid of some Indian spices. Int.J. Food Sci. Technol. 33, 533–537 (1998)CrossRefGoogle Scholar
  21. 21.
    D. Bertelli, M. Plessi, F. Miglietta, Effect of industrial microwave treatment on the antioxidant activity of herbs and spices. Ital. J. Food Sci. 16(1), 97–103 (2004)Google Scholar
  22. 22.
    A.B. Horwath, R.J. Grayer, D.M. Keith-Lucas, M.S. Simmonds, Chemical characterisation of wild populations of Thymus from different climatic regions in southeast Spain. Biochem. Syst. Ecol. 36(2), 117–133 (2008)CrossRefGoogle Scholar
  23. 23.
    J. Sádecká, Irradiation of spices—a review. Czech J. Food Sci. 25(5), 231–242 (2007)CrossRefGoogle Scholar
  24. 24.
    APHA, Standard Methods for the Examination of Dairy Products, 16th edn. (American Public Health Association, Washington, DC, 1993)Google Scholar
  25. 25.
    AOAC, Official methods of analysis 18th edn. (Association of Official Analytical Chemists, Washington, DC 2005)Google Scholar
  26. 26.
    A.L. Waterhouse, Determination of Total Phenolics. In: R.E. Wrolstad, Current Protocols in Food Analytical Chemistry, (John Wiley and Sons, New York, 6, I1.1.1–I1.1.8 2001)Google Scholar
  27. 27.
    D.O. Kim, S.W. Jeong, C.Y. Lee, Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81, 321–326 (2003)CrossRefGoogle Scholar
  28. 28.
    S.T. Chang, J.H. Wu, S.Y. Wang, P.L. Kang, N.S. Yang, L.F. Shyur, Antioxidant activity of extracts from Acacia confusa bark and heartwood. J. Agric. Food Chem. 49(7), 3420–3424 (2001)CrossRefGoogle Scholar
  29. 29.
    M. Polovka, M. Suhaj, The effect of irradiation and heat treatment on composition and antioxidant properties of culinary herbs and spices—a review. Food Rev. Int. 26(2), 138–161 (2010)CrossRefGoogle Scholar
  30. 30.
    N. Shahzad, S.N.R. Elahi, S. Ali, Effect of gamma irradiation on phytochemical content and antimicrobial activities of selected herbs. Austin J. Nutr. Food Sci. 5(3), 1093 (2017)Google Scholar
  31. 31.
    A. Kirkin, B. Mitrevski, G. Gunes, P.J. Marriott, Combined effects of gamma-irradiation and modified atmosphere packaging on quality of some spices. Food Chem. 154, 255–261 (2014)CrossRefGoogle Scholar
  32. 32.
    S. Esmaeili, M. Barzegar, M.A. Sahari, S. Berengi-Ardestani, Effect of gamma irradiation under various atmospheres of packaging on the microbial and physicochemical properties of turmeric powder. Radiat. Phys. Chem. 148, 60–67 (2018)CrossRefGoogle Scholar
  33. 33.
    I.R. Kubra, L. Jagan Mohan Rao, Microwave drying of ginger (Zingiber officinale Roscoe) and its effects on polyphenolic content and antioxidant activity. Int. J. Food Sci. Technol. 47(11), 2311–2317 (2012)CrossRefGoogle Scholar
  34. 34.
    B.F. Dababneh, An innovative microwave process for microbial decontamination of spices and herbs. Afr. J. Microbiol. Res. 7(8), 636–645 (2013)Google Scholar
  35. 35.
    H. Molnár, I. Bata-Vidács, E. Baka, Z. Cserhalmi, S. Ferenczi, R. Tömösközi-Farkas et al., The effect of different decontamination methods on the microbial load, bioactive components, aroma and color of spice paprika. Food Control 83, 131–140 (2018)CrossRefGoogle Scholar
  36. 36.
    N.H. Aziz, S.R. Mahrous, B.M. Youssef, Effect of gamma-ray and microwave treatment on the shelf-life of beef products stored at 5 °C. Food Control 13, 437–444 (2002)CrossRefGoogle Scholar
  37. 37.
    J.A. Canumir, J.E. Celis, J. de Bruijn, L.V. Vidal, Pasteurisation of apple juice by using microwaves. LWT-Food Sci. Technol. 35(5), 389–392 (2002)CrossRefGoogle Scholar
  38. 38.
    A. Khatun, A. Hossain, M. Islam, K. Munshi, A. Akter, B. Rahman, R. Huque, Evaluation of gamma irradiation and boiling treatment on antioxidant status in different spices. J. Food Process Eng. 40(3), (2017)Google Scholar
  39. 39.
    P.M. Koseki, A.L.C. Villavicencio, M.S. Brito, L.C. Nahme, K.I. Sebastião, P.R. Rela et al., Effects of irradiation in medicinal and eatable herbs. Radiat. Phys. Chem. 63, 681–684 (2002)CrossRefGoogle Scholar
  40. 40.
    M. Jamshidi, M. Barzegar, M.A. Sahari, Effect of gamma and microwave irradiation on antioxidant and antimicrobial activities of Cinnamomum zeylanicum and Echinacea purpurea. Int. Food Res. J. 21(4), 1289–1296 (2014)Google Scholar
  41. 41.
    K.F. Khattak, T.J. Simpson, Effect of gamma irradiation on the extraction yield, total phenolic content and free radical-scavenging activity of Nigella staiva seed. Food Chem. 110(4), 967–972 (2008)CrossRefGoogle Scholar
  42. 42.
    A. Anna, Antioxidant action and therapeutic efficacy of Allium sativum L. Molecules. 18, 690–700 (2013)CrossRefGoogle Scholar
  43. 43.
    J.H. Park, Y.K. Park, E. Park, Antioxidative and antigenotoxic effects of garlic (Allium sativum L.) prepared by different processing methods. Plant Foods Hum. Nutr. 64, 244–249 (2009)CrossRefGoogle Scholar
  44. 44.
    E.A.A. Elhussein, E. Kurtulbaş, M. Bilgin, A.S.B. Tan, M. Hacıoğlu, S. Şahin, Screening of the most consumed beverages and spices for their bioactive non-nutrient contents. J. Food Meas. Character. 12, 2289–2301 (2018)CrossRefGoogle Scholar
  45. 45.
    M. Carocho, A.L. Antonio, L. Barros, A. Bento, M.L. Botelho, I. Kaluska, I.C. Ferreira, Comparative effects of gamma and electron beam irradiation on the antioxidant potential of Portuguese chestnuts (Castanea sativa Mill.). Food Chem. Toxicol. 50(10), 3452–3455 (2012)CrossRefGoogle Scholar
  46. 46.
    A. Pereira, L. Barros, A.L. Antonio, S.C. Verde, C. Santos-Buelga, I.C. Ferreira, Infusions from Thymus vulgaris L. treated at different gamma radiation doses: effects on antioxidant activity and phenolic composition. LWT-Food Sci. Technol. 74, 34–39 (2016)CrossRefGoogle Scholar
  47. 47.
    A. Fatemi, A. Dadkhah, M.B. Rezaei, S. Dini, Effect of γ-irradiation on the chemical composition and antioxidant properties of cumin extracts. J. Food Biochem. 37(4), 432–439 (2013)CrossRefGoogle Scholar
  48. 48.
    S.J. Huang, J.L. Mau, Antioxidant properties of methanolic extracts from Agaricus blazei with various doses of γ-irradiation. LWT-Food Sci. Technol. 39(7), 707–716 (2006)CrossRefGoogle Scholar
  49. 49.
    N. Ayed, H. Yu, M. Lacroix, Improvement of anthocyanine yield and shelf-life extension of grape pomace by gamma-irradiation. Food Res. Int. 32, 539–543 (1999)CrossRefGoogle Scholar
  50. 50.
    I.R. Kubra, L.J.M. Rao, Microwave drying of ginger (Z ingiber officinale R oscoe) and its effects on polyphenolic content and antioxidant activity. Int. J. Food Sci. Technol. 47(11), 2311–2317 (2012)CrossRefGoogle Scholar
  51. 51.
    D. Arslan, M.M. Özcan, Study the effect of sun, oven and microwave drying on quality of onion slices. LWT-Food Sci. Technol. 43(7), 1121–1127 (2010)CrossRefGoogle Scholar
  52. 52.
    S.M. Kamel, Effect of microwave treatments on some bioactive compounds of parsley (Petroselinum crispum) and dill (Anethum graveolens) leaves. J. Food Proc. Technol. 4(6), 233 (2013)Google Scholar
  53. 53.
    M. Gallo, R. Ferracane, G. Graziani, A. Ritieni, V. Fogliano, Microwave assisted extraction of phenolic compounds from four different spices. Molecules 15(9), 6365–6374 (2010)CrossRefGoogle Scholar
  54. 54.
    D. Arslan, M.M. Özcan, Dehydration of red bell-pepper (Capsicum annuum L.): change in drying behavior, color and antioxidant content. Food Bioprod. Proc. 89(4), 504–513 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Amro B. Hassan
    • 1
  • Salma M. Ahmed
    • 2
  • Khitma A. Sir Elkhatim
    • 1
  • Tilal S. Abdelhalim
    • 3
  • Samson O. Fawale
    • 4
  • Oladipupo Q. Adiamo
    • 5
  • Isam A. Mohamed Ahmed
    • 5
    Email author
  1. 1.Environment and Natural Resources and Desertification Research Institute (ENDRI)National Center for ResearchKhartoumSudan
  2. 2.Sudanese Atomic Energy Commission (SAEC)KhartoumSudan
  3. 3.White Nile Research StationAgricultural Research Corporation, ARCWad MadaniSudan
  4. 4.Nigerian Institute for Oceanography and Marine ResearchLagosNigeria
  5. 5.Department of Food Science and Nutrition, Faculty of Food and Agricultural SciencesKing Saud UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations