Characterization of red prickly pear peel (Opuntia ficus-indica L.) and its mucilage obtained by traditional and novel methodologies

  • Paola Hernández-Carranza
  • Mariela Rivadeneyra-Mata
  • María E. Ramos-Cassellis
  • Xochitl Aparicio-Fernández
  • Addí R. Navarro-Cruz
  • Raúl Ávila-Sosa
  • Carlos E. Ochoa-VelascoEmail author
Original Paper


Prickly pear is an exotic fruit with a high amount of peel (40–45%), which is generally discarded. However, this by-product may be a good source of bioactive compounds that could be obtained using different technologies. Thus, the objective of this research was to characterize the red prickly pear peel and its mucilage obtained by both magnetic stirring and power ultrasound using water as solvent. Magnetic stirring at different temperatures (30, 40 and 50 °C) and times (10, 20 and 30 min) was applied as traditional extraction methodology. Power ultrasound at different amplitudes (30, 60 and 90%) and times (30, 60 and 90 s) was used as novel extraction methodology. Proximate chemical composition, structural polysaccharides, bioactive compounds, antioxidant capacity and microstructure were evaluated in prickly pear peel and mucilages. The maximum yield obtained with magnetic stirring and ultrasound was 41.8 ± 1.8% (40 °C for 10 min) and 33.6 ± 0.2% (30% of amplitude for 60 s), respectively. The chemical analysis of mucilages showed that contains structural polysaccharides such as cellulose and lignin. Phenolic compounds (12.00–18.60 mg GAE/g), betalains (1.12–1.48 mg/g) and antioxidant capacity by DPPH (3.12–4.88 mg GAE/g) and FRAP (28.45–30.08 mg AAE/g) assays were higher in mucilage obtained by magnetic stirring. Microstructural analysis showed the formation of agglomerated fibrils in prickly pear peel and mucilage extracted by magnetic stirring, whereas mucilage obtained by ultrasound exhibited more organized fibrils.


By-products Extraction methods Power ultrasound Bioactive compounds 



The author Dra. Paola Hernández Carranza would like to thanks to the “Programa para el Desarrollo Profesional Docente” (PRODEP) of the SEP for the financial support provided through its Project 511-6/17-8017.

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.


  1. 1.
    C. Flores-Valdez, J. Corrales-García, Cladodes and cactus pear: production, marketing, postharvest and industrialization, ed. by Centro de Investigaciones Económicas, Sociales y Tecnológicas de la Agroindustria y la Agricultura Mundial (CIESTAAM)-Programa Nopal, (Universidad Autónoma de Chapingo, México, 2003), pp. 1–18Google Scholar
  2. 2.
    Servicio de Información Agroalimentaria y Pesquera (SIAP), Producción anual de tuna. (2017), Accessed 17 June 2017
  3. 3.
    P.I. Angulo-Bejarano, O. Paredes-López, Nopal: a perspective view on its nutraceutical potential, ed. by H.M. Tunick, E.G. de Mejía. Hispanic foods: chemistry and bioactive compounds, (American Chemical Society, Washington, 2012), pp. 113–159CrossRefGoogle Scholar
  4. 4.
    P. Robert, V. Torres, P. García, C. Vergara, C. Sáenz, The encapsulation of purple cactus pear (Opuntia ficus-indica) pulp by using polysaccharide-proteins as encapsulating agents. LWT Food Sci. Technol. 60, 1039–1045 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Terán, D. Navas, D. Petit, E. Garrido, R. D’Aubeterre, Análisis de las características físico-químicas del fruto de Opuntia ficus-indica (L.) Miller, cosechados en Lara. Venezuela. Rev. Iber. Tecnología Postcosecha. 16, 69–74 (2015)Google Scholar
  6. 6.
    M.S. Santos-Díaz, A.P.B. Rosa, C. Héliés-Toussaint, F. Guéraud, A. Négre-Salvayre, Opuntia spp.: characterization and benefits in chronic diseases. Oxid. Med. Cell. Longev. 1–17 (2017)Google Scholar
  7. 7.
    E. Linarès, C. Thimonier, M. Degre, The effect of NeOpuntia on blood lipid parameters-risk factors for the metabolic síndrome (syndromeX). Adv. Ther. 24, 1115–1125 (2007)CrossRefGoogle Scholar
  8. 8.
    P. López-Romero, E. Pichardo-Ontiveros, A. Avila-Nava, N. Vázquez-Manjarrez, A.R. Tovar, J. Pedraza-Chaverri, N. Torres, The effect of nopal (Opuntia ficus indica) on postprandial blood glucosa, incretins, and antioxidant activity in Mexican patients with type 2 diabetes after consumption of two different composition breakfasts. J. Acad. Nutr. Diet. 114(11), 1811–1818 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Antunes-Ricardo, B.E. Moreno-García, J.A. Gutiérrez-Uribe, D. Aráiz-Hernández, M.M. Alvarez, S.O. Serna-Saldivar, Induction of apoptosis in colon cancer cells treated with isorhamnetin glycosides from Opuntia ficus-indica pads, Plant. Foods Hum. Nutr. 69(4), 331–336 (2014)CrossRefGoogle Scholar
  10. 10.
    C. Rodríguez-Rodríguez, N. Torres, J.A. Gutiérrez-Uribe, L.G. Noriega, I. Torre-Villalvazo, A.M. Leal-Díaz, M. Antunes-Ricardo, C. Márquez-Mota, G. Ordaz, R.A. Chavez-Santoscoy, S.O. Serna-Saldivar, A.R. Tovar, The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity. Food Funct. 6(3), 805–815 (2015)CrossRefGoogle Scholar
  11. 11.
    C. Sáenz, E. Sepúlveda, B. Matsuhiro, Opuntia spp mucilage’s: a functional component with industrial perspectives. J. Arid Environ. 57, 275–290 (2004)CrossRefGoogle Scholar
  12. 12.
    M. Elleuch, D. Bedigian, O. Roiseux, S. Besbes, C. Blecker, H. Attia, Dietary fibre and fibre-rich by-products of food proccesing: characterisation, technological functionality and comercial applications—a review. Food Chem. 124, 411–421 (2011)CrossRefGoogle Scholar
  13. 13.
    B.K. Tiwari, Ultrasound: a clean, green extraction technology. Trends Anal. Chem. 71, 100–109 (2015)CrossRefGoogle Scholar
  14. 14.
    J.D. Vega-Arroy, H. Ruiz-Espinosa, J.J. Luna-Guevara, M.L. Luna-Guevara, P. Hernández-Carranza, R. Ávila-Sosa, C.E. Ochoa-Velasco, Effect of solvents and extraction methods on total anthocyanins, phenolic compounds and antioxidant capacity of Renealmia alpinia (Rottb.) maas peel. Czech J. Food Sci. 35, 1–10 (2017)CrossRefGoogle Scholar
  15. 15.
    J.F. Barba, P. Putnik, K.D. Bursać, M.M. Poojary, S. Roohinejad, J.M. Lorenzo, M. Koubaa, Impact of conventional and non-conventional processing on prickly pear (Opuntia spp.) and their derived products: From preservation of beverages to valorization of by-products. Trends Food Sci. Technol. 67, 260–270 (2017)CrossRefGoogle Scholar
  16. 16.
    C. Sáenz, M. Vásquez, S. Trumper, C. Fluxá, Extracción y composición química de mucílago de tuna (Opuntia ficus indica). In: Actas. II Congreso Internacional de la tuna y cochinilla, pp. 93–96. Santiago Chile (1992)Google Scholar
  17. 17.
    A. Cárdenas, I. Higuera-Ciapara, F. Goycoolea, Rheology and aggregation of cactus (Opuntia ficus indica) mucilage in solution. J. Prof. Assoc. Cactus. 2, 152–159 (1997)Google Scholar
  18. 18.
    M.M. Poojary, F.J. Barba, B. Aliakbarian, F. Donsí, G. Pataro, D.A. Dias, P. Juliano, Innovative alternative technologies to extract carotenoids from microalgae and seaweeds. Mar. Drugs. 14(214), 1–34 (2016)Google Scholar
  19. 19.
    F. Jean-Francois, E. Lacroux, R. Valentin, Z. Mouloungui, Ultrasonication as a highly efficient method of flaxseed mucilage extraction. Ind. Crops Prod. 65, 354–360 (2015)CrossRefGoogle Scholar
  20. 20.
    H. Bagherian, A.F. Zokaee, A. Fouladitajar, M. Mohtashamy, Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem. Eng. Process. 50, 1237–1243 (2011)CrossRefGoogle Scholar
  21. 21.
    I. Ganesh-Moorthy, J. Prakash-Maran, S. Ilakya, S.L. Anitha, S. Pooja-Sabarima, B. Priya, Ultrasound assisted extraction of pectin from waste Artocarpus heterophyllus fruit peel. Ultrason. Sonochem. 34, 525–530 (2017)CrossRefGoogle Scholar
  22. 22.
    F.A. Jiménez, L.B. Gómez, G.J. Ramírez, M.B. García, R.A. Martínez, L.R. Torres, Efecto del ultrasonido y la agitación mecánica en la extracción del mucilago de las semillas de Hyptis suaveolens. in XII Encuentro Participación de la Mujer en la Ciencia, León, Guanajuato, México. (2014)Google Scholar
  23. 23.
    Y.L. Han, J. Gao, Y.Y. Yin, Z.H. Jin, X.M. Xu, H.Q. Chen, Extraction optimization by response surface methodology of mucilage polysaccharide from the peel of Opuntia dillenii haw. fruits and their physiochemical properties. Carbohydr. Polym. 151, 381–391 (2016)CrossRefGoogle Scholar
  24. 24.
    P. Hernández-Carranza, R. Ávila-Sosa, J.A. Guerrero-Beltrán, A.R. Navarro-Cruz, E. Corona-Jiménez, C.E. Ochoa-Velasco, Optimization of antioxidant compounds extraction from fruit by-products: apple pomace, orange and banana peel. J. Food Process. Preserv. 40(1), 103–115 (2016)CrossRefGoogle Scholar
  25. 25.
    L.A. Muñoz, A. Cobos, O. Diaz, J.M. Aguilera, Chia seeds: microstructure, mucilage extraction and hydration. J. Food Engineering. 108, 216–224 (2012)CrossRefGoogle Scholar
  26. 26.
    AOAC, Official Methods of Analysis, 20th edn. (Association Official Analytical Chemists, Washington, DC, 2000)Google Scholar
  27. 27.
    A. Ng, A.J. Parr, L.M. Ingham, N.M. Rigby, K.M. Waldron, Cell wall chemistry of carrots (Daucus carota CV. Amstrong) during maturation and storage. J. Agric. Food Chem. 46, 2933–2939 (1998)CrossRefGoogle Scholar
  28. 28.
    F.C. Stintzing, K.M. Herbach, M.R. Mosshammer, R. Carle, W. Yi, S. Sellappan, C.C. Akoh, R. Bunch, P. Felker, Color, betalain pattern and antioxidant properties of cactus pear (Opuntia spp.) clones. J. Agric. Food Chem. 53, 442–451 (2005)CrossRefGoogle Scholar
  29. 29.
    M. Oyaizu, Studies on products of browning reaction: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 44(2), 307–315 (1986)CrossRefGoogle Scholar
  30. 30.
    F. Chemat, N. Rombaut, A. Sicaire, A. Meullemiestre, A. Fabiano-Tixier, M. Abert-Vian, Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 34, 540–560 (2017)CrossRefGoogle Scholar
  31. 31.
    R. Jovanovic-Malinovska, S. Kuzmanova, E. Winkelhausen, Application of ultrasound for enhanced extraction of prebiotic oligosaccharides from selected fruits and vegetables. Ultrason. Sonochem. 22, 443–456 (2015)CrossRefGoogle Scholar
  32. 32.
    M. Corrales, S. Toepfl, P. Butz, D. Knorr, B. Tauscher, Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innov. Food Sci. Emerg. Technol. 9, 85–91 (2008)CrossRefGoogle Scholar
  33. 33.
    M.K. Khan, M. Abert-Vian, A.S. Fabiano-Tixier, O. Dangles, F. Chemat, Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem. 119, 851–858 (2010)CrossRefGoogle Scholar
  34. 34.
    M.N. Safdar, T. Kausar, S. Jabbar, A. Mumtaz, K. Ahad, A.A. Saddozai, Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. J. Food Drug Anal. 25(3), 488–500 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Monrroy, E. García, K. Ríos, J.R. García, Extraction and physicochemical characterization of mucilage from Opuntia cochenillifera (L.) Miller. J. Chem. 2017, 1–9 (2017)Google Scholar
  36. 36.
    E. Sepúlveda, C. Sáenz, E. Aliaga, C. Aceituno, Extraction and characterization of mucilage in Opuntia spp. J. Arid Environ. 68, 534–545 (2007)CrossRefGoogle Scholar
  37. 37.
    E.M. Yahia, E. Castellanos, Identification and quantification of pigments in prickly pear fruit. Acta Hortic. 877, 1129–1135 (2010)CrossRefGoogle Scholar
  38. 38.
    N.M. El-Said, A.I. Nagib, Z.A. Rahman, S.F. Deraz, Prickly pear [Opuntia ficus-indica (L.) Mill] peels: chemical composition, nutritional value and protective effects on liver and kidney functions and colesterol in rats. Funct. Plant Sci. Biotechnol. 5, 30–35 (2011)Google Scholar
  39. 39.
    Z. Rodríguez-Riera, M. Robaina-Mesa, U. Jáuregui-Haza, A. Blanco-González, J.E. Rodríguez-Chanfrau, Empleo de la radiación ultrasónica para la extracción de compuestos bioactivos provenientes de fuentes naturales. Estado actual y perspectivas. Revista CENIC Ciencias Químicas. 45, 139–147 (2014)Google Scholar
  40. 40.
    X. Li, X. He, L.V. Yuanping, H.E. Qiang, Extraction and functional properties of water-soluble dietary fiber from apple pomace. J. Food Process Eng. 37, 293–298 (2014)CrossRefGoogle Scholar
  41. 41.
    F. Figuerola, M.K. Hurtado, A.M. Estevèz, I. Chiffelle, F. Asenjo, Fiber concentrates from apple pomace and citrus peel as potential fiber sources for Food enrichment. Food Chem. 91(3), 395–401 (2005)CrossRefGoogle Scholar
  42. 42.
    M. Cruz-Requena, C.N. Aguilar-González, L.A. Prado-Barragán, T. Correia, J.C. Contreras-Esquivel, R. Rodríguez-Herrera, Functional and physico-chemical properties of six desert-sources of dietary fiber. Food Biosci. 16, 26–31 (2016)CrossRefGoogle Scholar
  43. 43.
    O. Di Marco, Estimación de calidad de los forrajes. Sitio Argentino de Producción Animal. 20(240), 24–30 (2011)Google Scholar
  44. 44.
    Y. Habibi, M. Mahrouz, M.R. Vignon, Microfibrillated cellulose from the peel of prickly pear fruits. Food Chem. 115, 423–429 (2009)CrossRefGoogle Scholar
  45. 45.
    I.A. Saleh, M. Vinatoru, T.J. Mason, E.A. Aboutabl, F.M. Hammouda, A possible general mechanism for ultrasound-assisted extraction (UAE) suggested from the results of UAE of chlorogenic acid from Cynara scolymus L. (artichoke) leaves. Ultrason. Sonochem. 31, 330–336 (2016)CrossRefGoogle Scholar
  46. 46.
    A. Cardador-Martínez, C. Jiménez-Martínez, G. Sandoval, Revalorization of cactus pear (Opuntia spp.) wastes as a source of antioxidants. Ciência e Tecnologia de Alimentos Campinas. 31(3), 782–788 (2011)CrossRefGoogle Scholar
  47. 47.
    A. Piga, Cactus pear: a fruit of nutraceutical and functional importance. J. Prof. Assoc. Cactus. 6(1), 9–22 (2004)Google Scholar
  48. 48.
    C. Albano, C. Negro, N. Tommasi, C. Gerardi, G. Mita, A. Miceli, L. De Bellis, F. Blando, Betalains, phenols and antioxidant capacity in cactus pear [Opuntia ficus-indica (L.) Mill.] fruits from apulia (South Italy) genotypes. Antioxidants. 4, 269–280 (2015)CrossRefGoogle Scholar
  49. 49.
    X. Aparicio-Fernández, A. Vega-Ahuatzin, C.E. Ochoa-Velasco, S. Cid-Pérez, P. Hernández-Carranza, R. Ávila-Sosa, Physical and antioxidant characterization of edible films added with red prickly pear (Opuntia ficus-indica L.) cv. San Martín peel and/or its aqueous extracts. Food Bioprocess Tech. 11, 368–379 (2018)CrossRefGoogle Scholar
  50. 50.
    C. Butera, L. Tesoriere, F. Di Gaudio, A. Bongiorno, M. Allegra, A.M. Pintaudi, R. Kohen, M.A. Livrea, Antioxidant activities of Sicilian prickly pear (Opuntia ficus-indica) fruit extracts and reducing properties of its betalains: betanin and indicaxanthin. J. Agric. Food Chem. 50, 6895–6901 (2002)CrossRefGoogle Scholar
  51. 51.
    W. Wang, X. Ma, Y. Xu, Y. Cao, Z. Jiang, T. Ding, X. Ye, D. Liu, Ultrasound-assisted heating extraction of pectin from grapefruit peel: optimization and comparison with the conventional method. Food Chem. 178, 106–114 (2015)CrossRefGoogle Scholar
  52. 52.
    L. Zhang, X. Ye, T. Ding, X. Sun, Y. Xu, D. Liu, Ultrasound effects on the degration kinetics, structure and rheological properties of apple pectin. Ultrason. Sonochem. 20, 222–231 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Bioquímica-Alimentos, Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Ingeniería en Alimentos, Facultad de Ingeniería QuímicaBenemérita Universidad Autónoma de PueblaPueblaMexico
  3. 3.Centro Universitario de los LagosUniversidad de GuadalajaraLagos de MorenoMexico

Personalised recommendations