Advertisement

Journal of Food Measurement and Characterization

, Volume 11, Issue 4, pp 1761–1772 | Cite as

Optimization of vacuum-assisted microwave drying parameters of green bell pepper using response surface methodology

  • Vivek KumarEmail author
  • Shanker Lal Shrivastava
Original Paper

Abstract

Green bell pepper was dried under vacuum-assisted microwave drying condition and the process was optimized using response surface methodology. The effect of microwave power (100–300 W) and vacuum level (200–600 mm Hg) were observed on the responses, viz. green color ratio, rehydration ratio, hardness, apparent density ratio, drying time and specific energy consumption. A central composite face-centered design was used to develop predictive regression models for the responses. Analysis of variance showed that quadratic model best fitted the experimental data. The microwave power level had greater effect on the quality attributes of green bell pepper; nevertheless at higher vacuum level the dried products had better quality. The optimum drying conditions were determined to be 284.4 W microwave power, 600 mm Hg vacuum level and the optimized value of the responses were obtained as green color ratio of 80.70%, rehydration ratio of 10.75, hardness of 152.98 N, apparent density ratio of 76.02%, drying time of 78 min, and specific energy consumption of 6.57 MJ/kg. Validation experiment was carried out at derived optimum condition to verify the prediction and adequacy of the models. Close agreement between experimental and predicted values was obtained.

Keywords

Green bell pepper Optimization Vacuum-assisted microwave drying Response surface methodology Specific energy consumption 

List of symbols

ADR

Apparent density ratio (%)

β

Model coefficient

D(x)

Desirability function

g

Gram

GBP

Green bell pepper

GHz

Gigahertz

GR

Green color ratio (%)

kcal

Kilocalorie

M

Microwave power, W

MHz

Megahertz

RR

Rehydration ratio

RSM

Response surface methodology

SEC

Specific energy consumption (MJkg-1)

V

Vacuum level, mm Hg

VAM

Vacuum-assisted microwave;

W

Watt

X

Code independent variable

Y

Code dependent variable

Subscripts

i, j

Indices of response variables

k

Indices of estimated model coefficient

n

Total number of responses

References

  1. 1.
    V. Kumar, S.L. Shrivastava, Int. J. Food Stud. 6(1), 67–81 (2017)CrossRefGoogle Scholar
  2. 2.
    Y. Lee, L.R. Howard, B. VillalÓN, J Food Sci. 60(3), 473–476 (1995)CrossRefGoogle Scholar
  3. 3.
    T.Y. Tunde-Akintunde, T.J. Afolabi, O.B. Akintunde, J. Food Eng. 68(4), 439–442 (2005)CrossRefGoogle Scholar
  4. 4.
    B.I.O. Ade-Omowaye et al., J. Food Eng. 60(1), 89–98 (2003)CrossRefGoogle Scholar
  5. 5.
    L. Somogyi, B. Luh, Vegetable dehydration, 2 edn. Commercial Vegetable Processing. (Van Nostrand Reinhold, New York, 1988)Google Scholar
  6. 6.
    K.S. Jayaraman, D.K. Das Gupta, in Drying of Fruits and Vegetables, in Handbook of Industrial Drying, 4th edn., ed. by A.S. Mujumdar (CRC Press, Boca Raton, 2014), pp. 611–635Google Scholar
  7. 7.
    A. Kilic, J. Food Process Eng. 40(2), e12378 (2017)CrossRefGoogle Scholar
  8. 8.
    C. Scaman, T. Durance, in Combined Microwave Vacuum Drying, in Emerging Technologies for Food Processing, ed. by D. Sun, (Elsevier: Amsterdam, 2005), pp. 507–534CrossRefGoogle Scholar
  9. 9.
    A.S. Mujumdar, C.L. Law, Food Bioprocess Technol. 3(6), 843–852 (2010)CrossRefGoogle Scholar
  10. 10.
    I. Doymaz, O. İsmail, Food Sci. Biotechnol. 19(6), 1449–1455 (2010)CrossRefGoogle Scholar
  11. 11.
    F. Kaymak-Ertekin, J. Food Sci. 67(1), 168–175 (2002)CrossRefGoogle Scholar
  12. 12.
    U. S. Pal, M. K. Khan, S. N. Mohanty, Drying Technol. 26(12), 1584–1590 (2008)CrossRefGoogle Scholar
  13. 13.
    D. Arslan, M. Özcan, Food Bioprod. Process. 89(4), 504–513 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Kaleemullah, R. Kailappan, J. Food Eng 76(4), 531–537 (2006)CrossRefGoogle Scholar
  15. 15.
    A. Vega-Gálvez et al., J. Food Eng. 85(1), 42–50 (2008)CrossRefGoogle Scholar
  16. 16.
    A. Vega-Gálvez et al., Food Chem. 117(4), 647–653 (2009)CrossRefGoogle Scholar
  17. 17.
    E. Abano, H. Ma, W. Qu, J. Food Qual. 35(3), 159–168 (2012)CrossRefGoogle Scholar
  18. 18.
    J. Yongsawatdigul, S. Gunasekaran, J. Food Process. Preserv. 20(2), 145–156 (1996)CrossRefGoogle Scholar
  19. 19.
    J. Bondaruk, M. Markowski, W. Blaszczak, J. Food Eng 81(2), 306–312 (2007)CrossRefGoogle Scholar
  20. 20.
    Z. W. Cui, et al., Drying Technol. 26(12), 1517–1523 (2008)CrossRefGoogle Scholar
  21. 21.
    A. Figiel, J. Food Eng. 98(4), 461–470 (2010)CrossRefGoogle Scholar
  22. 22.
    P. Sham, C. Scaman, T. Durance, J. Food Sci. 66(9), 1341–1347 (2001)CrossRefGoogle Scholar
  23. 23.
    Z.W. Cui, S.Y. Xu, D.W. Sun, Drying Technol. 21(7), 1173–1184 (2003)CrossRefGoogle Scholar
  24. 24.
    C. Kiranoudis, E. Tsami, Z. Maroulis, Drying Technol. 15(10), 2421–2440 (1997)CrossRefGoogle Scholar
  25. 25.
    P. Sutar, S. Prasad, Drying Technol, 29(3), 371–380 (2011)Google Scholar
  26. 26.
    M. Ozdemir, et al., LWT-Food Sci. Technol. 41(10), 2044–2050 (2008)CrossRefGoogle Scholar
  27. 27.
    G.E.P. Box, K.B. Wilson, in On the Experimental Attainment of Optimum Conditions, in Breakthroughs in Statistics: Methodology and Distribution, ed. by S. Kotz, N.L. Johnson (Springer, New York, 1992), pp. 270–310CrossRefGoogle Scholar
  28. 28.
    B.K. Mehta et al., Appl. Math. 03(10), 8 (2012)CrossRefGoogle Scholar
  29. 29.
    P. S. Madamba, LWT Food Sci. Technol. 35(7), 584–592 (2002)CrossRefGoogle Scholar
  30. 30.
    C. Liyana-Pathirana, F. Shahidi, Food Chem. 93(1), 47–56 (2005)CrossRefGoogle Scholar
  31. 31.
    I. Eren, F. Kaymak-Ertekin, J. Food Eng. 79(1), 344–352 (2007)CrossRefGoogle Scholar
  32. 32.
    A. Datta, Fundamentals of heat and moisture transport for microwaveable food product and process development. In Handbook of microwave technology for food applications, ed. by R. Anantheswaran (Marcel Dekker, New York, 2001), pp. 115–172Google Scholar
  33. 33.
    J. Lee et al., J. Food Compos. Anal. 13(1), 45–57 (2000)CrossRefGoogle Scholar
  34. 34.
    D.C. Montgomery, Design and Analysis of Experiments: Graph. Darst. (John Wiley & Sons, New York, 1984)Google Scholar
  35. 35.
    S. Giri, S. Prasad, 25(5), 901–911 (2007)Google Scholar
  36. 36.
    A. Chauhan, A. Srivastava, Drying Technol. 27(6), 761–769 (2009)CrossRefGoogle Scholar
  37. 37.
    D. Kumar, S. Prasad, G.S. Murthy, J. Food Sci. Technol. 51(2), 221–232 (2014)CrossRefGoogle Scholar
  38. 38.
    S. Giri, S. Prasad, Int. J. Food Prop. 9(3), 409–419 (2006)CrossRefGoogle Scholar
  39. 39.
    G. Sharma, S. Prasad, J. Food Eng. 50(2), 99–105 (2001)CrossRefGoogle Scholar
  40. 40.
    R. Myers, D. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments. (Wiley, New York, 1995)Google Scholar
  41. 41.
    O. Alves-Filho et al., Dehydration of Green Peas Under Atmospheric Freeze-Drying Conditions. (XIV Simposio Internacional de Secado, São Paulo, 2004)Google Scholar
  42. 42.
    R. Guiné, et al., 9° Encontro de Química dos Alimentos 2009, 4–4, (2009)Google Scholar
  43. 43.
    A. Marabi et al., J. Food Eng. 72(3), 211–217 (2006)CrossRefGoogle Scholar
  44. 44.
    P.P. Lewicki, J. Food Eng. 36(1), 81–87 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Agricultural and Food EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations