Advertisement

Journal of Food Measurement and Characterization

, Volume 11, Issue 4, pp 1569–1577 | Cite as

Application of D-optimal design for optimizing Parkia biglobosa flour-based cookie

  • Emmanuel Kwaw
  • Maurice Tibiru ApaliyaEmail author
  • Augustina Sackle Sackey
  • William Tchabo
  • Gustav K. Mahunu
Original Paper
  • 178 Downloads

Abstract

The aim of the study was to produce cookie by partial substitution of wheat flour (WF) with Parkia biglobosa Flour (PBF) and use D-optimal design to enhance the baking time (BT), the cookie diameter (CD), the cookie width (CW) and the cookie hardness (CH). The cookie sensory attributes (taste, aroma, texture, colour and overall likeness) were also evaluated in the study. The results established that it is possible to obtain Parkia biglobosa flour-based cookies that have slightly more sensory acceptability than those made from only wheat flour. In general, cookie acceptability was influenced by the different compositions of the formulation. Increasing the proportion of PBF in the composite flour resulted in an increase in width of the cookie as well as induced a significant increase in the hardness of the cookie. The optimum formulation was WF (208.133 g), PBF (200 g) and MA (241.867 g) with a correspondent BT of 7.9266 min, CD of 161.674 mm, CW of 46.3052 mm and CH values of 40.2973 mm with a desirable value of 0.896. Using these predicted parameters, the experimental results obtained were BT = 7.0 ± 0.10 min, CD = 162.0 ± 2.0 mm, CW = 45.0 ± 1.0 mm and CH = 44.50 ± 2.00 N.

Keywords

Wheat flour Parkia biglobosa flour Margarine D-optimal Optimization 

Notes

Acknowledgements

Our appreciation goes to the School of Applied Sciences and Arts, Cape Coast Technical University for making all the facilities available for this work. We also show our heartfelt appreciation to the panel who evaluated the sensory parameters of the product.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    J. Rajiv, C. Soumya, Food Measure 9, 135–142 (2015)CrossRefGoogle Scholar
  2. 2.
    E. Agama-Acevedo, J.J. Islas-Hernández, G. Pacheco-Vargas, P. Osorio-Díaz, L.A. Bello-Pérez, LWT-Food Sci. Technol. 46, 177–182 (2012)CrossRefGoogle Scholar
  3. 3.
    C. Handa, S. Goomer, A. Siddhu, J. Food Sci. 76, 198–202 (2011)CrossRefGoogle Scholar
  4. 4.
    R. Jyotsna, C. Soumya, S. Swati, P. Prabhasankar, Food Measure 10, 762–772 (2016)CrossRefGoogle Scholar
  5. 5.
    U. Ismaila, A. Gana, N. Tswanya, D. Dogara, Afr J Agric Res. 5, 1341–1350 (2010)Google Scholar
  6. 6.
    R. FAO, World Agriculture: Towards 2015/2030 Summary Report, ed. by FAO, Rome, Italy, 2002Google Scholar
  7. 7.
    C.M. Rosell, F. Barro, C. Sousa, M.C. Mena, J. Cereal Sci. 59, 354–364 (2014)CrossRefGoogle Scholar
  8. 8.
    R. Potter, V. Stojceska, A. Plunkett, Food Measure 8, 362–372 (2014)CrossRefGoogle Scholar
  9. 9.
    C.M. Mancebo, J. Picón, M. Gómez, LWT-Food Sci. Technol. 64, 264–269 (2015)CrossRefGoogle Scholar
  10. 10.
    V.D. Capriles, J.A.G. Arêas, Comp. Rev. Food Sci. Food Saf. 13, 871–890 (2014)CrossRefGoogle Scholar
  11. 11.
    H. Khouryieh, F. Aramouni, J. Sci. Food Agric. 92, 2366–2372 (2012)CrossRefGoogle Scholar
  12. 12.
    E. Lara, P. Cortés, V. Briones, M. Perez, LWT-Food Sci. Technol. 44, 622–630 (2011)CrossRefGoogle Scholar
  13. 13.
    M. Sakač, M. Pestorić, A. Mandić, A. Mišan, N. Nedeljković, D. Jambrec, P. Jovanov, V. Lazic, L. Pezo, I. Sedej, J. Cereal Sci. 69, 336–343 (2016)CrossRefGoogle Scholar
  14. 14.
    R. Zouari, S. Besbes, S. Ellouze-Chaabouni, D. Ghribi-Aydi, Food Chem. 194, 758–769 (2016)CrossRefGoogle Scholar
  15. 15.
    E. de la Hera, E. Ruiz-París, B. Oliete, M. Gómez, LWT-Food Sci. Technol. 49, 48–54 (2012)CrossRefGoogle Scholar
  16. 16.
    M. Gómez, B. Oliete, C. M. Rosell, V. Pando, E. Fernández, LWT-Food Sci. Technol. 41, 1701–1709 (2008)CrossRefGoogle Scholar
  17. 17.
    B. Miñarro, E. Albanell, N. Aguilar, B. Guamis, M. Capellas, J. Cereal Sci. 56, 476–481 (2012)CrossRefGoogle Scholar
  18. 18.
    A. S. Sackey, E. Kwaw, JFNS 1, 43–49 (2013)CrossRefGoogle Scholar
  19. 19.
    G. Adu, W. O. Ellis, I. Oduro, F. Appiah, AJFS 6, 111–116 (2012)Google Scholar
  20. 20.
    M. Aremu, E. Awala, O. Opaluwa, R. Odoh, T. Bamidele, Commun. Appl. Sci. 3, 22–41 (2015)Google Scholar
  21. 21.
    U. Zakari, A. Hassan, J. Ndife, AJFS 9, 17–22 (2015)Google Scholar
  22. 22.
    B. Pareyt, F. Talhaoui, G. Kerckhofs, K. Brijs, H. Goesaert, M. Wevers, J.A. Delcour, J. Food Eng. 90, 400–408 (2009)CrossRefGoogle Scholar
  23. 23.
    C. O’brien, A. Mueller, A. Scannell, E. Arendt, J. Food Eng. 56, 265–267 (2003)CrossRefGoogle Scholar
  24. 24.
    S.D. Lin, C.C. Lee, J.L. Mau, L.Y. Lin, S.Y. Chiou, J. Food Qual. 33, 14–26 (2010)CrossRefGoogle Scholar
  25. 25.
    A. Forker, S. Zahn, H. Rohm, Food Bioprocess Tech. 5, 2497–2505 (2012)CrossRefGoogle Scholar
  26. 26.
    D.D. Tengse, B. Priya, P.A.R. Kumar, Food Measure 11, 85–92 (2017)CrossRefGoogle Scholar
  27. 27.
    L.S.T. Jovanelli, S.E. Kitahara, J.C.B. Fernandes, Food Measure 10, 336–340 (2016)CrossRefGoogle Scholar
  28. 28.
    A. Sharma, H. Mahajan, J. P. Dwivedi, M. Gupta, Food Measure 9, 152–159 (2015)CrossRefGoogle Scholar
  29. 29.
    V. Kumar, H. Sharma, P. Kaushal, K. Singh, Food Measure 9, 35–51 (2015)CrossRefGoogle Scholar
  30. 30.
    Z. Šumić, A. Tepić, S. Vidović, J. Vladić, B. Pavlić, Food Measure 10, 425–433 (2016)CrossRefGoogle Scholar
  31. 31.
    D. Foskett, N. Rippington, P. Paskins, S. Thorpe, in Practical Cookery, for Level 2 NVQs and Apprenticeships (Hachette, UK, 2015)Google Scholar
  32. 32.
    R.F. Gunst, Technometrics 38(3), 284–286 (1996)CrossRefGoogle Scholar
  33. 33.
    F.N. Engmann, Y. Ma, H. Zhang, L. Yu, N. Deng, J. Sci. Food Agric. 94, 2345–2356 (2014)CrossRefGoogle Scholar
  34. 34.
    J.P. Maran, S. Manikandan, K. Thirugnanasambandham, C.V. Nivetha, R. Dinesh, Carbohydr. Polym. 92, 604–611 (2013)CrossRefGoogle Scholar
  35. 35.
    K. Yetilmezsoy, S. Demirel, R.J. Vanderbei, J. Hazard Mater. 171, 551–562 (2009)CrossRefGoogle Scholar
  36. 36.
    K.A. Kumar, G. Sharma, M. Khan, A. Semwal, Food Measure 10, 274–282 (2016)CrossRefGoogle Scholar
  37. 37.
    L.C. Doescher, R. Hoseney, G. Milliken, G. Rubenthaler, Cereal Chem. 64, 163–167 (1987)Google Scholar
  38. 38.
    J. Jacob, K. Leelavathi, J. Food Eng. 79, 299–305 (2007)CrossRefGoogle Scholar
  39. 39.
    H.-J. Chung, A. Cho, S.-T. Lim, LWT-Food Sci. Technol. 57, 260–266 (2014)CrossRefGoogle Scholar
  40. 40.
    R. Miller, R. Hoseney, C. Morris, Cereal Chem. 74, 669–671 (1997)CrossRefGoogle Scholar
  41. 41.
    M. Singh, A. Mohamed, LWT-Food Sci. Technol. 40, 353–360 (2007)CrossRefGoogle Scholar
  42. 42.
    S. Rai, A. Kaur, B. Singh, JFST 51, 785–789 (2014)Google Scholar
  43. 43.
    S. Hooda, S. Jood, Food Chem. 90, 427–435 (2005)CrossRefGoogle Scholar
  44. 44.
    L. Laguna, A. Salvador, T. Sanz, S.M. Fiszman, LWT-Food Sci. Technol. 44, 737–746 (2011)CrossRefGoogle Scholar
  45. 45.
    M.A. Gularte, M. Gómez, C.M. Rosell, Food Bioprocess Tech. 5, 3142–3150 (2012)CrossRefGoogle Scholar
  46. 46.
    B.S. Ghotra, S.D. Dyal, S.S. Narine, Food Res. Int. 35, 1015–1048 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Emmanuel Kwaw
    • 1
    • 3
  • Maurice Tibiru Apaliya
    • 2
    • 3
    Email author
  • Augustina Sackle Sackey
    • 1
  • William Tchabo
    • 3
  • Gustav K. Mahunu
    • 4
  1. 1.School of Applied Sciences and ArtsCape Coast Technical UniversityCape CoastGhana
  2. 2.Association of Church Based Development Project (ACDEP)TamaleGhana
  3. 3.School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
  4. 4.Department of HorticultureUniversity for Development StudiesTamaleGhana

Personalised recommendations