Journal of Food Measurement and Characterization

, Volume 11, Issue 3, pp 1306–1314 | Cite as

Change in morphological properties and fatty acid composition of ornamental pumpkin seeds (Cucurbita pepo var. ovifera) and their classification by chemometric analysis

  • Akife Dalda Sekerci
  • Kevser KaramanEmail author
  • Halit Yetisir
  • Osman Sagdic
Original Paper


Ornamental pumpkin is affiliated to Cucurbitaceae family and included within Cucurbita pepo var. ovifera botanical class. They are commonly grown for ornamental uses and known as a group of hard-shelled, colorful, and odd shaped fruits. In this study, some morphological properties of 38 ornamental pumpkin seeds from different cities in Turkey were determined. And also, oil content and fatty acid composition of the seeds were characterized. Oil contents of seeds were determined in the range of 19–41% and palmitic, stearic, oleic and linoleic acids were detected as the major fatty acids in the samples. Linoleic acid had the highest level among the determined fatty acids (~42–66%). Besides, principal component analysis was performed to characterize and classify the pumpkin seeds depending on the fatty acid composition and fruit morphological properties. Two principal components were obtained from the chemometric analysis and they were found to be explanatory of more than 87.02% of the total variability in the data set for fatty acids. In addition, significant correlations were found between some morphological properties and oil content (P < 0.05). This study is the first report on the oil content and fatty acid composition of ornamental pumpkin seeds belonging to the different genotypes.


Ornamental pumpkin Cucurbita pepo var. ovifera Morphological characteristics Fatty acids Linoleic acid PCA 


  1. 1.
    J.M. Blanca, J. Cañizares, C. Roig, P. Ziarsolo, F. Nuez, M.B. Picó, BMC Genom. 12, 104 (2011)CrossRefGoogle Scholar
  2. 2.
    S. Aliu, A. Haziri, S. Fetahu, N. Aliage, I. Rusinove, I. Haziri, V. Arapi, Notulae Sci. Biol. 3(2), 119–122 (2011).Google Scholar
  3. 3.
    D.S. Decker, Econ. Bot. 42(1), 4–15 (1988)CrossRefGoogle Scholar
  4. 4.
    B. Tuncer, Y. YU J. Agr Sci. 23(2), 164–171 (2013)Google Scholar
  5. 5.
    Anonymus, (2002). Accessed 15 June 2016
  6. 6.
    Anonymus, The Culture and Use of Ornamental Gourds, (2008)Google Scholar
  7. 7.
    M. Murkovic, A. Hillebrand, J. Winkler, E. Leitner, W. Pfannhauser, Eur. Food Res. Technol. 203, 216–219 (1996)Google Scholar
  8. 8.
    Y.M. Younis, S. Ghirmay, S.S. Al-Shihry, Phytochem 54, 71–75 (2000)CrossRefGoogle Scholar
  9. 9.
    W.L. Applequist, B. Avula, B.T. Schaneberg, Y.H. Wang, I.A. Khan, J. Food Comp. Anal. 19, 606–611 (2006).CrossRefGoogle Scholar
  10. 10.
    R.H. Glew, R.S. Glew, L.T. Chuang, Y.S. Huang, M. Millson, D. Constans, D.J. Van der Jagt, Plant Foods Human Nutr. 61, 51–56 (2006).CrossRefGoogle Scholar
  11. 11.
    D.J. Murphy, In vitro cell. Dev. Biol. Plant 42, 89–99 (2006)CrossRefGoogle Scholar
  12. 12.
    S.J. Haswell, in Practical Guide to Chemometrics, ed. by P. Gemperline 1st ed. Marcel Dekker, New York, (1992), pp. 1–3Google Scholar
  13. 13.
    H. Yetisir, M. Sakar, S. Serce, Genet Resour. Crop Evol. 55, 1257–1266 (2008)CrossRefGoogle Scholar
  14. 14.
    E. Candir, H. Yetisir, F. Karaca, D. Ustun, Turk. J. Agric. For. 37, 443–456 (2013)Google Scholar
  15. 15.
    S. Silici, K. Karaman, J. Liq. Chromatogr Relat. Technol. 37(6), 864–877 (2014)CrossRefGoogle Scholar
  16. 16.
    R. Upadhyay, S. Sehwag, H. Niwas Mishra, Food Chem. 218(1), 496–504 (2017)CrossRefGoogle Scholar
  17. 17.
    R. Upadhyay, H. Niwas Mishra, Int. J. Food Sci. Technol. 50(4), 974–981 (2015)CrossRefGoogle Scholar
  18. 18.
    E. Yildirim, O.S. Toker, S. Karaman, A. Kayacier, M. Dogan, Turk. J. Agric. For. 39, 80–90 (2015)CrossRefGoogle Scholar
  19. 19.
    SAS Institute, SAS/STAT software: changes and enhancements through release 6. 12. (NCSAS Institute, Cary, 1997)Google Scholar
  20. 20.
    L. Rezig, M. Chouaibi, K. Msaada, S. Hamdi. Ind. Crops Prod. 37, 82–87 (2012)CrossRefGoogle Scholar
  21. 21.
    S. Nederal Nakic, D. Rade, D. Skevin, D. Strucelj, Z. Mokrovcak, L. M. Bartolic, Eur. J. Lipid Sci. Technol. 108, 936–943 (2006)CrossRefGoogle Scholar
  22. 22.
    M. Semma, J. Health Sci. 48(1), 7–13 (2002)CrossRefGoogle Scholar
  23. 23.
    P.L. Zock, M.B. Katan, Am. J. Clin. Nutr. 68, 142–153 (1998)Google Scholar
  24. 24.
    D.B. Oomah, S. Ladet, V.D. Godfrey, J. Liang, B. Giarard, J. Food Chem. 69, 187–193 (2000)CrossRefGoogle Scholar
  25. 25.
    J.C. Lovejoy, M.M. Most, M. Lefevre, F.L. Greenway, J.C. Rood, Am J Clin Nutr 76, 1000–1006 (2002)Google Scholar
  26. 26.
    P. Mitra H.S. Ramaswamy, K.S. Chang, J. Food Eng. 95, 208–213 (2009)CrossRefGoogle Scholar
  27. 27.
    Z. Zdunczyk, D. Minakowsk, S. Frejnagel, M. Flis, Nahrung 43 (6), 392–395 (1999)CrossRefGoogle Scholar
  28. 28.
    D.G. Stevenson, F.J. Eller, L. Wang, J.L. Jane, T. Wang, G.E. Inglett, J Agr Food Chem. 55, 4005–4013 (2007)CrossRefGoogle Scholar
  29. 29.
    C. Larrigaudiere, I. Lentheric, J. Puy, E. Pinto, Postharvest Biol. Technol. 31, 29–39 (2004)CrossRefGoogle Scholar
  30. 30.
    E. Mladenovıć, J. Berenjı, V. Ognjanov, M. Ljubojevıć, J. Čukanovıć, T. Salamun, Genetika 46(1), 199–207 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Akife Dalda Sekerci
    • 1
  • Kevser Karaman
    • 2
    Email author
  • Halit Yetisir
    • 1
  • Osman Sagdic
    • 3
  1. 1.Department of Horticulture, Faculty of AgricultureErciyes UniversityKayseriTurkey
  2. 2.Department of Agricultural Biotechnology, Faculty of AgricultureErciyes UniversityKayseriTurkey
  3. 3.Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey

Personalised recommendations