Advertisement

Evaluation of cress seed gum and xanthan gum effect on macrostructure properties of gluten-free bread by image processing

  • Sara Naji-Tabasi
  • Mohebbat MohebbiEmail author
Original Paper

Abstract

In recent times computer vision employing image processing techniques has been developed rapidly in order to quantitatively characterize of foods. In this study, effect of cress seed gum as a novel gluten substitute and xanthan gum (1 % base on flour and starch weight) on gluten-free bread were investigated by image processing. Additionally, bread crumb analyzed during storage (24 and 72 h). Bread features selected for analysis were moisture content, specific volume, slice shape, crust and crumb color, pore area fraction, pore size distribution, number of cells/cm2, pore shape, fractal dimension of pore boundaries and crumb texture. The results exhibited, hydrocolloids improved quality of gluten-free breads significantly (p < 0.05). Hydrocolloid addition increased pore area fraction and had positive effect on crumb color during storage. Hydrocolloid by forming thick layer influenced the stability of gas cells and caused more regular and solids pores in gluten-free bread which was more noticeable in breads containing cress seed gum. Fractal values of boundaries indicated that the breads containing cress seed gum had more regular and smooth boundaries. Texture analysis by gray level co-occurrence matrix revealed stability crumb texture during storage.

Keywords

Image analysis Gluten-free bread Cress seed gum Xanthan gum 

References

  1. 1.
    J.A. Murray, Am. J. Clin. Nutr. 69(3), 354 (1999)Google Scholar
  2. 2.
    E. Gallagher, T. Gormley, E. Arendt, Trends Food Sci. Technol. 15(3), 143 (2004)CrossRefGoogle Scholar
  3. 3.
    S. Susanna, P. Prabhasankar, Food Sci. Technol. (LWT) 50(2), 613 (2012)CrossRefGoogle Scholar
  4. 4.
    R. Mahmoud, E. Yousif, M. Gadallah, A. Alawneh, Ann. Agric. Sci. 58(1), 19 (2013)Google Scholar
  5. 5.
    A. Bakke, Z. Vickers, J. Food Sci. 72(7), 473 (2007)CrossRefGoogle Scholar
  6. 6.
    A. Lazaridou, D. Duta, M. Papageorgiou, N. Belc, C. Biliaderis, J. Food Eng. 79(3), 1033 (2007)CrossRefGoogle Scholar
  7. 7.
    M. Mohammadi, N. Sadeghnia, M.H Azizi, T.R. Neyestani, A.M Mortazavian, J. Ind Eng Chem. 20(4), 1812 (2014)Google Scholar
  8. 8.
    E. Dickinson, Food Hydrocoll. 17(1), 25 (2003)CrossRefGoogle Scholar
  9. 9.
    S. Mezaize, S. Chevallier, A. Le Bail, M. De Lamballerie, J. Food Sci. 74(3), 140 (2009)CrossRefGoogle Scholar
  10. 10.
    I. Demirkesen, B. Mert, G. Sumnu, S. Sahin, J. Food Eng. 96(2), 295 (2010)CrossRefGoogle Scholar
  11. 11.
    E. Gallagher, T. Gormley, E. Arendt, J. Food Eng. 56(2), 153 (2003)CrossRefGoogle Scholar
  12. 12.
    G. Sworn, in Handbook of Hydrocolloids, ed. by G.O. Phillips, Williams, Peter Anthony (CRC Press, Boca Raton, 2000)Google Scholar
  13. 13.
    A. Imeson, Food stabilisers, thickeners and gelling agents (Wiley, Oxford, 2011)Google Scholar
  14. 14.
    E. Gimeno, C. Moraru, J. Kokini, Cereal Chem. 81(1), 100 (2004)CrossRefGoogle Scholar
  15. 15.
    S. Naji, S.M.A. Razavi, H. Karazhiyan, Food Hydrocoll. 28(1), 75 (2012)CrossRefGoogle Scholar
  16. 16.
    S. Naji, S.M.A. Razavi, H. Karazhiyan, A. Koocheki, Electron. J. Environ. Agric. Food Chem. 11(3), 222 (2012)Google Scholar
  17. 17.
    H. Karazhiyan, S.M.A. Razavi, G.O. Phillips, Y. Fang, S. Al-Assaf, K. Nishinari, Int. J. Comp. Sci. Info. Technol. 46(5), 1066 (2011)Google Scholar
  18. 18.
    S. Naji, S.M.A Razavi, H. Karazhiyan, Food Bioprocess. Technol. 6, 1302 (2013)Google Scholar
  19. 19.
    V. Gökmen, H.Z. Senyuva, B. Dülek, E. Cetin, Mol. Nutr. Food Res. 50(9), 805 (2006)CrossRefGoogle Scholar
  20. 20.
    C.-J. Du, D.-W. Sun, J. Food Eng. 72(1), 39 (2006)CrossRefGoogle Scholar
  21. 21.
    D.-W. Sun, Computer vision technology for food quality evaluation. Food science and technology International series (Academic Press, London, 2008)Google Scholar
  22. 22.
    H. Sapirstein, R. Roller, W. Bushuk, Cereal Chem. 71, 383 (1994)Google Scholar
  23. 23.
    R. Jahromi, S. Hossein, M. Karimi, F.T Yazdi, S.A Mortazavi, J. Food Process. Preserv. ISSN 1745–4549 (2013)Google Scholar
  24. 24.
    S. Ozge Ozkoc, G. Sumnu, S. Sahin, Food Hydrocoll. 23(8), 2182 (2009)CrossRefGoogle Scholar
  25. 25.
    Y. Mohd Jusoh, N. Chin, Y. Yusof, R. Abdul Rahman, J. Food Eng. 94(3), 366 (2009)CrossRefGoogle Scholar
  26. 26.
    S. Wang, A. Karrech, K. Regenauer-Lieb, S. Chakrabati-Bell, J. Food Eng. 116(4), 852 (2013)CrossRefGoogle Scholar
  27. 27.
    S. Wang, P. Austin, S. Bell, J. Cereal Sci. 54(2), 203 (2011)CrossRefGoogle Scholar
  28. 28.
    J. Gray, J. Bemiller, Compr. Rev. Food Sci. Food Saf. 2(1), 1 (2003)CrossRefGoogle Scholar
  29. 29.
    American Association Of Cereal Chemists (AACC), Approved methods of the AACC. (St Paul, Minneapolis, 2000)Google Scholar
  30. 30.
    R. Quevedo, J. Aguilera, F. Pedreschi, Food Bioprocess. Tech. 3(5), 637 (2010)CrossRefGoogle Scholar
  31. 31.
    I.C Moreira, in Complexidade e Caos, ed. by H.M Nussenzveig (Editora UFRJ/COPEA, Rio de Janeiro), pp. 51–82Google Scholar
  32. 32.
    M. Barros Filho, F. Sobreira, Assessing texture pattern in slum across scales: an unsupervised approach, Vol. 87 (CASA Working Papers Series, 2005)Google Scholar
  33. 33.
    C. Tournier, M. Grass, D. Zope, C. Salles, D. Bertrand, J. Food Eng. 113(4), 615 (2012)CrossRefGoogle Scholar
  34. 34.
    P. Mohanaiah, P. Sathyanarayana, L. GuruKumar, Int. J. Sci. Res. Publ. 3(5), 2250 (2013)Google Scholar
  35. 35.
    H.A. Gavilighi, M.H. Azizi, M. Barzegar, M.A. Ameri, J. Food Technol. 4(3), 185 (2006)Google Scholar
  36. 36.
    A. Hegazy, M. Ammar, M. Ibrahium, World J. Dairy Food Sci. 4(2), 123 (2009)Google Scholar
  37. 37.
    A. Guarda, C. Rosell, C. Benedito, M. Galotto, Food Hydrocoll. 18(2), 241 (2004)CrossRefGoogle Scholar
  38. 38.
    M.E. Barcenas, C.M. Rosell, Food Hydrocoll. 19(6), 1037 (2005)CrossRefGoogle Scholar
  39. 39.
    Z. Kohajdová, J. Karovičová, Š. Schmidt, Acta Chim. Slovaca 2(1), 46 (2009)Google Scholar
  40. 40.
    H. Karazhiyan, S.M.A. Razavi, G.O. Phillips, Food Hydrocoll. 25(5), 915 (2011)CrossRefGoogle Scholar
  41. 41.
    F. Fan, Q. Ma, J. Ge, Q. Peng, W.W. Riley, S. Tang, J. Food Eng. 118(4), 426 (2013)CrossRefGoogle Scholar
  42. 42.
    F. Pedreschi, J. Leon, D. Mery, P. Moyano, Food Res. Int. 39(10), 1092 (2006)CrossRefGoogle Scholar
  43. 43.
    R. Ziobro, T. Witczak, L. Juszczak, J. Korus, Food Hydrocoll. 32, 2, (2013)Google Scholar
  44. 44.
    L.S. Sciarini, P.D. Ribotta, A.E. León, G.T. Pérez, Int. J. Food Sci. Technol. 45(11), 2306 (2010)Google Scholar
  45. 45.
    R. Sharadanant, K. Khan, Cereal Chem. 80(6), 773 (2003)CrossRefGoogle Scholar
  46. 46.
    I. Mandala, K. Sotirakoglou, Food Hydrocoll. 19(4), 709 (2005)CrossRefGoogle Scholar
  47. 47.
    A. Kadir, L.E. Nugroho, A. Susanto, P.I. Santosa, Int. J. Comp. Sci. Info. Technol. 3(3), 256 (2011)Google Scholar
  48. 48.
    R. Agarwal, S. Agarwal, N. Mishra, Int. J. Comp. Sci. Info. Technol. 2(4), 80 (2013)Google Scholar
  49. 49.
    U. Gonzales-Barron, F. Butler, Eur. Food Res. Technol. 226(4), 721 (2008)CrossRefGoogle Scholar
  50. 50.
    G. Juodeikiene, J. Salomskiene, D. Eidukonyte, D. Vidmantiene, V. Narbutaite, L. Vaiciulyte-Funk, Food Technol. Biotechnol. 49(4), 502 (2011)Google Scholar
  51. 51.
    J. Chanona-Pérez, R. Quevedo, A. R. Jiménez Aparicio, C. Gumeta Chávez, J. A. Mendoza Pérez, G. Calderón Domínguez, L. Alamilla-Beltrán, G. F. Gutiérrez-López, in Food engineering: integrated approaches, ed. by G.V. B.-C. Gustavo, F. Gutiérrez-López, Jorge Welti-Chanes, Efrén Parada-Arias (Springer New York, 2008), pp. 277–286Google Scholar
  52. 52.
    A. Shahbahrami, T.A. Pham, K. Bertels, J. Supercomput. 59(3), 1455 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Food Science and TechnologyFerdowsi University of Mashhad (FUM)MashhadIran

Personalised recommendations