Effect of the defatting process, acid and alkali extraction on the physicochemical and functional properties of hemp, flax and canola seed cake protein isolates

  • Sue-Siang Teh
  • Alaa El-Din Bekhit
  • Alan Carne
  • John Birch
Original Paper

Abstract

The effect of the defatting process, acid and alkali extractions on the physicochemical and functional properties of hemp, flax and canola protein isolates was studied. The defatting process enriched the protein content from around 35 to 52–55 % in the defatted oilseed cakes. Further treatment with acid and alkali led to the highest enrichment (P < 0.05) in the protein content (>90 %). The defatting process produced the lightest (P < 0.05) colour compared to the parent oilseed cakes and the protein isolates. Alkali extraction produced protein isolates with the highest (P < 0.05) water holding capacity while the original oilseed cakes had the highest oil holding capacity. Acid and alkali extractions produced protein isolates with the highest emulsifying activity and emulsion stability. The alkaline soluble flax protein isolate and acid hemp protein isolate had the highest (P < 0.05) creaming stability and largest droplet size respectively. Amino acid profiles of protein isolates after acid and alkali extraction were improved, leading to a protein suitable for fortification in food products that meet human nutrition requirements.

Keywords

Protein isolate Hemp Flax Canola Seeds Functional properties 

References

  1. 1.
    A. Moure, J. Sineiro, H. Domínguez, J.C. Parajó, Food Res. Int. 39, 945–963 (2006)CrossRefGoogle Scholar
  2. 2.
    H.N. Rabetafika, V. Van Remoortel, S. Danthine, M. Paquot, C. Blecker, Int. J. Food Sci. Tech. 46, 221–228 (2011)CrossRefGoogle Scholar
  3. 3.
    L. Karlsson, K. Martinsson, Livestock Sci. 138, 125–131 (2011)CrossRefGoogle Scholar
  4. 4.
    B.D. Oomah, G. Mazza, Food Chem. 48, 109–114 (1993)CrossRefGoogle Scholar
  5. 5.
    T.J.A. Finnigan, M.J. Lewis, J. Sci. Food Agr. 36, 520–530 (1985)CrossRefGoogle Scholar
  6. 6.
    L.E. Abugoch, N. Romero, C.N.A. Tapia, J. Silva, M.N. Rivera, J. Agric. Food Chem. 56, 4745–4750 (2008)CrossRefGoogle Scholar
  7. 7.
    H. Tomotake, I. Shimaoka, J. Kayashita, M. Nakajoh, N. Kato, J. Agric. Food Chem. 50, 2125–2129 (2002)CrossRefGoogle Scholar
  8. 8.
    C.W. Coffmann, V.V. Garciaj, Int. J. Food Sci. Tech. 12, 473–484 (1977)CrossRefGoogle Scholar
  9. 9.
    K. Mueller, P. Eisner, Y. Yoshie-Stark, R. Nakada, E. Kirchhoff, J. Food Eng. 98, 453–460 (2010)CrossRefGoogle Scholar
  10. 10.
    X. Mao, Y. Hua, Int. J. Mol. Sci. 13, 1561–1581 (2012)CrossRefGoogle Scholar
  11. 11.
    E. Tsaliki, S. Pegiadou, G. Doxastakis, Food Hydrocoll. 18, 631–637 (2004)CrossRefGoogle Scholar
  12. 12.
    R.E. Aluko, T. McIntosh, J. Sci. Food Agr. 81, 391–396 (2001)CrossRefGoogle Scholar
  13. 13.
    C.H. Tang, Z. Ten, X.S. Wang, X.Q. Yang, J. Agric. Food Chem. 54, 8945–8950 (2006)CrossRefGoogle Scholar
  14. 14.
    J.B.W. Mugendi, E.N.M. Njagi, E.N. Kuria, M.A. Mwasaru, J.G. Mureithi, Z. Apostolides, Int. Food Res. J. 17, 357–366 (2010)Google Scholar
  15. 15.
    T. Amza, I. Amadou, K. Zhu, H. Zhou, Food Res. Int. 44, 2843–2850 (2011)CrossRefGoogle Scholar
  16. 16.
    P.W.M. Marambe, P.J. Shand, J.P.D. Wanasundara, J. Am. Oil Chem. Soc. 85, 1155–1164 (2008)CrossRefGoogle Scholar
  17. 17.
    A.C. Karaca, N. Low, M. Nickerson, Food Res. Int. 44, 2991–2998 (2011)CrossRefGoogle Scholar
  18. 18.
    Y.M. Tzeng, L.L. Diosady, L.J. Rubin, J. Food Sci. 55, 1147–1151 (1990)CrossRefGoogle Scholar
  19. 19.
    J.P. Krause, M. Schultz, S. Dudek, J. Sci. Food Agr. 82, 970–976 (2002)CrossRefGoogle Scholar
  20. 20.
    Y.H. Kuan, M.T. Liong, J. Agric. Food Chem. 56, 9252–9257 (2008)CrossRefGoogle Scholar
  21. 21.
    G.T. Meng, K.M. Ching, C.Y. Ma, Food Chem. 79, 93–103 (2002)CrossRefGoogle Scholar
  22. 22.
    R.M. Vidotti, E.M.M. Viegas, D.J. Carneiro, Anim. Feed Sci. Tech. 105, 199–204 (2003)CrossRefGoogle Scholar
  23. 23.
    C.W. Ho, W.M.W. Aida, M.Y. Maskat, H. Osman, Pak. J. Biol. Sci. 11, 989–995 (2008)CrossRefGoogle Scholar
  24. 24.
    W. Liming, Z. Jinhui, X. Xiaofeng, L. Yi, Z. Jing, J. Food Comp. and Anal. 22, 242–249 (2009)CrossRefGoogle Scholar
  25. 25.
    M.J.Y. Lin, E.S. Humbert, F.W. Sosulski, J. Food Sci. 39, 368–370 (1974)CrossRefGoogle Scholar
  26. 26.
    R.Y. Khattab, S.D. Arntfield, LWT Food Sci. Tech. 42, 1119–1124 (2009)CrossRefGoogle Scholar
  27. 27.
    J.D. House, J. Neufeld, G. Leson, J. Agric. Food Chem. 58, 11801–11807 (2010)CrossRefGoogle Scholar
  28. 28.
    J.C. Callaway, Euphytica 140, 65–72 (2004)CrossRefGoogle Scholar
  29. 29.
    J.E. Kinsella, N. Melachouris, Crit. Rev. in Food Sci. Nut. 7, 219–280 (1975)Google Scholar
  30. 30.
    P.J. Hailing, P. Walstra, Crit. Rev. in Food Sci. Nut. 15, 155–203 (1981)Google Scholar
  31. 31.
    S.S. Teh, J. Birch, J. Food Comp. Anal. 30, 26–31 (2013)CrossRefGoogle Scholar
  32. 32.
    O. Paredes-lópez, C. Ordorica-falomir, M.R. Olivares-vázquez, J. Food Sci. 56, 726–729 (1991)CrossRefGoogle Scholar
  33. 33.
    C.I. Onwulata, S. Isobe, P.M. Tomasula, P.H. Cooke, J. Dairy Sci. 89, 71–81 (2006)CrossRefGoogle Scholar
  34. 34.
    A.O. Onigbinde, V. Onobun, Food Chem. 47, 125–127 (1993)CrossRefGoogle Scholar
  35. 35.
    E. Dickinson, J. Dairy Sci. 80, 2607–2619 (1997)CrossRefGoogle Scholar
  36. 36.
    D.J. McClements, Crit. Rev. Food Sci. Nut. 47, 611–649 (2007)CrossRefGoogle Scholar
  37. 37.
    C.H. Tang, X.S. Wang, X.Q. Yang, Food Chem. 114, 1484–1490 (2009)CrossRefGoogle Scholar
  38. 38.
    M.W.Y. Chung, B. Lei, E.C.Y. Li-Chan, Food Chem. 90, 271–279 (2005)CrossRefGoogle Scholar
  39. 39.
    B.D. Oomah, G. Mazza, Ind. Crop. Prod. 9, 29–37 (1998)CrossRefGoogle Scholar
  40. 40.
    M.F. Marcone, Y. Kakuda, R.Y. Yada, Food Chem. 62, 27–47 (1998)CrossRefGoogle Scholar
  41. 41.
    M.A. Sadeghi, S. Bhagya, World J. Dairy Food Sci. 4(2), 100–106 (2009)Google Scholar
  42. 42.
    M. Aider, C. Barbana, Trends Food Sci. Tech. 22, 21–39 (2011)CrossRefGoogle Scholar
  43. 43.
    T.A.L. Derek, J. Biol. Chem. 238, 1438–1440 (1963)Google Scholar
  44. 44.
    Q. Hall, M.C. Cannon, The Plant Cell Online 14, 1161–1172 (2002)CrossRefGoogle Scholar
  45. 45.
    Association of Official Analytical Chemists, Methods of analysis of the association of official analytical chemists, 16th edn. (AOAC, Washington, 1997)Google Scholar
  46. 46.
    FAO/WHO/UNU Energy and protein requirements. Report of a Joint FAO/WHO/UNU Expert Consultation. (WHO Technical Report Series. Geneva, 1985)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sue-Siang Teh
    • 1
  • Alaa El-Din Bekhit
    • 1
  • Alan Carne
    • 2
  • John Birch
    • 1
  1. 1.Department of Food ScienceUniversity of OtagoDunedinNew Zealand
  2. 2.Department of BiochemistryUniversity of OtagoDunedinNew Zealand

Personalised recommendations