Functional and bioactive properties of Velvet bean (Mucuna pruriens) protein hydrolysates produced by enzymatic treatments

  • Maira Rubi Segura-Campos
  • Tomás Tovar-Benítez
  • Luis Chel-Guerrero
  • David Betancur-AnconaEmail author
Original Paper


Velvet bean (Mucuna pruriens) protein hydrolysates were produced with gastrointestinal enzymes. Functional properties such as nitrogen solubility, emulsifying capacity and emulsion stability, foam capacity and stability of the hydrolysates were determined. Angiotensin I-converting enzyme inhibitory, antioxidant and antithrombotic capacities were evaluated to determine the biological activity of hydrolysates. For pepsin, degree of hydrolysis (DH) increased sharply between 5 min (22.33 %) and 60 min (28.07 %), respectively, with a maximum DH of 33.50 % (90 min). For pancreatin, DH increased sharply between 5 min (25.08 %) and 90 min (34.92 %), respectively, with a maximum DH of 37.23 % (120 min). For sequential system pepsin–pancreatin, DH increased sharply between 5 min (25.21 %) and 60 min (32.82 %), respectively, with a maximum DH of 34.14 % (120 min). Hydrolysates with the lowest DH and the highest DH were selected to assess the functional and biological potential. Mucuna pruriens limited hydrolysates can be considered a useful food additives to provide functional properties, while M. pruriens extensive hydrolysates can be used as nutraceutical ingredients.


Mucuna pruriens Velvet bean Protein hydrolysates Functional properties Bioactive properties 



This publication forms part of the projects “Investigación científica dirigida al desarrollo de derivados proteínicos de Mucuna pruriens con potencial actividad biológica para la prevención y/o tratamiento de enfermedades crónicas asociadas al sobrepeso y la obesidad” funded by CONACYT-México (Project 154307), and “Purificación y caracterización de péptidos bioactivos obtenidos por hidrólisis enzimática de proteínas de Fuentes vegetales subutilizadas (Red Temática: Bioactividad de péptidos e hidrolizados),” funded by Programa de Mejoramiento al Profesorado-PROMEP-SEP.


  1. 1.
    R. Bressani, Factors influencing nutritive value in food grain legumes: Mucuna in comparison to other grain legumes. in Mucuna as a food and feed: current uses and the way forward, ed. by M. Flores, M. Eilittä, M. Myhrman, L. Carew, R. Carsky, April 26–29, 2000, Tegucigalpa (CIDICCO, CIEPCA, and World Hunger Research Center, Tegucigalpa, 2002), pp. 164–188Google Scholar
  2. 2.
    P. Gurumoorthi, M. Pugalenthi, K. Janardhanan, Nutritional potential of five accessions of a South Indian tribal pulse, Mucuna pruriens var. utilis II. Investigations on total free phenolics, tannins, trypsin and chymotrypsin inhibitors, phytohaemagglutinins, and in vitro protein digestibility. J. Trop. Subtrop. Agroecosyst. 1, 153–158 (2003)Google Scholar
  3. 3.
    J. Vioque, R. Sánchez-Vioque, A. Clemente, J. Pedroche, F. Millán, Partially hydrolysis rapeseed protein isolates with improved functional properties. J. Am. Oil Chem. Soc. 77, 1–4 (2000)CrossRefGoogle Scholar
  4. 4.
    S. Frokjear, Use of hydrolysates for protein supplementation. Food Technol. 48, 86–88 (1994)Google Scholar
  5. 5.
    S.Y. Kim, P.S.W. Park, K.C. Rhe, Functional properties of proteolytic enzyme modified soy protein isolate. J. Agric. Food Chem. 38, 651–656 (1990)CrossRefGoogle Scholar
  6. 6.
    J.P. Krause, K.D. Schewenke, Changes in interfacial properties of legumin from faba beans (Vicia faba L.) by tryptic hydrolysis. Nahrung 39, 396–405 (1995)CrossRefGoogle Scholar
  7. 7.
    H. Lqari, J. Pedroche, J. Girón-Calle, J. Vioque, F. Millán, Production of Lupinus angustifolius protein hydrolysates with improved functional properties. Grasas Aceites 56(2), 135–140 (2005)CrossRefGoogle Scholar
  8. 8.
    J.Y. Je, P.J. Park, J.Y. Kwon, A.K. Kim, A novel angiotensin I converting enzyme inhibitory peptide from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. J. Agric. Food Chem. 52, 7842–7845 (2004)CrossRefGoogle Scholar
  9. 9.
    N. Souissi, A. Bougatef, Y. Triki-Ellouz, M. Nasri, Biochemical and functional properties of sardinella (Sardinella aurita) by-product hydrolysates. Food Technol. Biotechnol. 45(2), 187–194 (2007)Google Scholar
  10. 10.
    D. Betancur-Ancona, S. Gallegos-Tintoré, L. Chel-Guerrero, Wet-fractionation of Phaseolus lunatus seeds: partial characterization of starch and protein. J. Sci. Food Agric. 84(10), 1193–1201 (2004)CrossRefGoogle Scholar
  11. 11.
    AOAC, in Official methods of analysis, 15th edn., ed. by W. Horwitz (Association of Official Analytical Chemists, Washington, DC, 1997)Google Scholar
  12. 12.
    C. Megías, M. Yust, J. Pedroche, H. Lquari, J. Girón-Calle, M. Alaiz, F. Millán, J. Vioque, Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. J. Agric. Food Chem. 52, 1928–1932 (2004)CrossRefGoogle Scholar
  13. 13.
    Y. Yang, D.E. Marczak, M. Yokoo, H. Usui, M. Yoshikawa, Isolation and antihypertensive effect of angiotensin I-converting enzyme (ACE) inhibitory peptides from Spinach rubisco. J. Agric. Food Chem. 51, 4897–4902 (2003)CrossRefGoogle Scholar
  14. 14.
    P. Nielsen, D. Petersen, C. Dammann, Improved method for determine food protein degree of hydrolysis. J. Food Sci. 66, 642–648 (2001)CrossRefGoogle Scholar
  15. 15.
    L. Were, L. Hettiarachchy, U. Kalapathy, Modified soy proteins with improved foaming and water hydration properties. J. Food Sci. 62(4), 821–824 (1997)CrossRefGoogle Scholar
  16. 16.
    K. Pearce, J. Kinsella, Emulsifying properties of proteins: evaluation of a turbidimetric technique. J. Agric. Food Chem. 26, 716–723 (1978)CrossRefGoogle Scholar
  17. 17.
    C. Dagorn-Scaviner, J. Guéguen, J. Lefebre, Emulsifying of pea globulins as related to their adsorption behaviors. J. Food Sci. 2, 335–341 (1986)Google Scholar
  18. 18.
    C.F. Chau, K.C.P. Cheung, Y.S. Wong, Functional properties of protein concentrates from three Chinese indigenous legume seeds. J. Agric. Food Chem. 45(7), 2500–2503 (1997)CrossRefGoogle Scholar
  19. 19.
    M. Hayakari, Y. Kondo, A rapid and simple spectrophotometric assay of angiotensin-converting enzyme. Anal. Biochem. 84, 361–369 (1978)CrossRefGoogle Scholar
  20. 20.
    A. Pukalskas, T. Van Beek, R. Venskutonis, J. Linssen, A. Van Veldhuizen, A. Groot, Identification of radical scavengers in sweet grass (Hierochloe odorata). J. Agric. Food Chem. 50, 2914–2919 (2002)CrossRefGoogle Scholar
  21. 21.
    M. Miyashita, M. Akamatsu, H. Ueno, Y. Nakagawa, K. Nishumura, Y. Hayashi, Y. Sato, T. Ueno, Structure activity relationships of RGD mimetics as fibrinogen-receptor antagonists. Biosci. Biotechnol. Biochem. 63, 1684–1690 (1999)CrossRefGoogle Scholar
  22. 22.
    D. Montgomery, Diseño y análisis de experimentos (Grupo Editorial Iberoamericana, México, D.F., 2003), pp. 14–27Google Scholar
  23. 23.
    V.R. Sánchez, A. Clemente, J. Vioque, J. Bautista, F. Millán, Neutral lipids of chickpea flour and protein isolates. J. Am. Oil Chem. Soc. 75, 851–855 (1998)CrossRefGoogle Scholar
  24. 24.
    D. Betancur-Ancona, R. Martínez-Rosado, A. Corona-Cruz, A. Castellanos-Ruelas, M.E. Jaramillo-Flores, L. Chel-Guerrero, Functional properties of hydrolysates from Phaseolus lunatus seeds. Int. J. Food Sci. Technol. 44, 128–137 (2009)CrossRefGoogle Scholar
  25. 25.
    D. Betancur-Ancona, S. Gallegos-Tintore, A. Delgado-Herrera, V. Pérez-Flores, A. Castellanos-Ruelas, L. Chel-Guerrero, Some physicochemical and antinutritional properties of raw flours and protein isolates from Mucuna pruriens (velvet bean) and Canavalia ensiformis (Jack bean). Int. J. Food Sci. Technol. 43, 816–823 (2008)CrossRefGoogle Scholar
  26. 26.
    L. Chel-Guerrero, V. Pérez-Flores, D. Betancur-Ancona, G. Dávila-Ortíz, Functional properties of flours and protein isolates from Phaseolus lunatus and Canavalia ensiformis seeds. J. Agric. Food Chem. 50, 584–591 (2002)CrossRefGoogle Scholar
  27. 27.
    L. Corzo-Ríos, L. Chel-Guerrero, D. Betancur-Ancona, Extracción de las fracciones de almidón y proteína del grano de la leguminosa Mucuna pruriens. Tecnología Ciencia y Educación 15, 37–41 (2000)Google Scholar
  28. 28.
    H.G. Kristinsson, B.A. Rasco, Fish protein hydrolysates: production, biochemical, and functional properties. Crit. Rev. Food Sci. Nutr. 40, 43–81 (2000)CrossRefGoogle Scholar
  29. 29.
    B.R. Petersen, The impact of the enzymatic hydrolysis process on recovery and use of proteins, in Enzymes and food processing, ed. by G.G. Birch, N. Blakebrough, K.J. Parker (Elsevier Applied Science Publishers, London, 1981), pp. 269–299Google Scholar
  30. 30.
    K. Bandyopadhyay, S. Ghosh, Preparation and characterization of papain-modified sesame (Sesamum indicum L.) protein isolates. J. Agric. Food Chem. 50, 6854–6857 (2002)CrossRefGoogle Scholar
  31. 31.
    N.S. Hettiarachchy, U. Kalapathy, Solubility and emulsifying properties of soy protein isolates modified by pancreatin. J. Food Sci. 62, 1110–1115 (1997)CrossRefGoogle Scholar
  32. 32.
    N. Bombara, A.M.R. Pilosof, M.C. Añon, Mathematical model to describe the rate of formation and collapse of foams from enzyme modified wheat flours. J. Food Sci. 59, 626–630 (1994)CrossRefGoogle Scholar
  33. 33.
    L.G. Hong, L.G. Wei, H. Liu, S.Y. Hui, Mung-bean protein hydrolysates obtained with alcalase exhibit angiotensin-I converting enzyme inhibitory activity. Food Sci. Technol. Int. 11, 281–287 (2005)CrossRefGoogle Scholar
  34. 34.
    M. Gobbetti, F. Minervini, C.G. Rizzello, Angiotensin I-converting enzyme inhibitory and antimicrobial bioactive peptides. Int. J. Dairy Technol. 57, 173–188 (2004)CrossRefGoogle Scholar
  35. 35.
    H.M. Chen, K. Muramoto, F. Yamauchi, Structural analysis of antioxidant pep-tides from soybean b-conglycinin. J. Agric. Food Chem. 43, 574–578 (1995)CrossRefGoogle Scholar
  36. 36.
    B. Hernández-Ledesma, A. Dávalos, B. Bartolomé, L. Amigo, Preparation of antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulin. Identification of active peptides by HPLC-MS/MS. J. Agric. Food Chem. 53, 588–593 (2005)CrossRefGoogle Scholar
  37. 37.
    H. Guo, Y. Kouzuma, M. Yonekura, Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem. 113, 238–245 (2009)CrossRefGoogle Scholar
  38. 38.
    N. Rajapakse, E. Mendis, W.K. Jung, J.Y. Je, S.K. Kim, Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res. Int. 38, 175–182 (2005)CrossRefGoogle Scholar
  39. 39.
    A. Atanassov, B. Tchorbanov, Synthetic and natural peptides as antithrombotic agents-A view on the current development. Biotechnol. Biotechnol. Equip. 23, 1109–1114 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Maira Rubi Segura-Campos
    • 1
  • Tomás Tovar-Benítez
    • 1
  • Luis Chel-Guerrero
    • 1
  • David Betancur-Ancona
    • 1
    Email author
  1. 1.Facultad de Ingeniería QuímicaUniversidad Autónoma de YucatánMéridaMexico

Personalised recommendations