Motion compensated image processing and optimal parameters for egg crack detection using modified pressure

  • Seung Chul Yoon
  • Kurt C. Lawrence
  • Deana R. Jones
  • Gerald W. Heitschmidt
  • Bosoon Park
Original Paper


Shell eggs with microcracks are often undetected during egg grading processes. In the past, a modified pressure imaging system was developed to detect eggs with microcracks without adversely affecting the quality of normal intact eggs. The basic idea of the modified pressure imaging system was to apply a short burst of vacuum within a transparent chamber in order to cause a momentary and forced opening in the egg shell with a crack and thus to utilize the changes in image intensities during this process. The intensity changes from dark to bright in the shell surface were recorded by a high-resolution digital camera and processed by an image ratio technique. However, the performance of the imaging system was compromised by both false readings due to motion of intact eggs relative to the camera and an improper selection of parameter values for the detection algorithm. First, a machine vision technique based on motion estimation of individual eggs was developed to compensate any motion errors present on images and thus reduce false crack-detection readings. The simulation results of the developed motion estimation and compensation technique with 3,000 eggs showed no false errors. Second, the receiver operating characteristic (ROC) curve was used to evaluate and compare the performance of the crack-detection algorithm under varying parameters (ratio and detection-tolerance thresholds) and to find the optimal parameter values. The area under the ROC curve (AUC) was used to compare the performance under varying parameter values. The minimum distance and Youden index criteria were used to find the optimal values from the ROC curve. The minimum distance criterion found the optimal parameters at 1.11 and 20 (or 1.1 and 25) for the ratio and detection-tolerance thresholds, respectively. The true positive and false positive rates at the optimal conditions were 98.91 and 0.14 %, respectively.


Egg crack detection Microcrack Motion estimation and compensation Modified pressure 


  1. 1.
    E.C.D. Todd, Int. J. Food Microbiol. 30, 125 (1996)CrossRefGoogle Scholar
  2. 2.
    M.M. Bain, N. MacLeod, R. Thomson, J.W. Hancock, Poult. Sci. 85, 2001 (2006)Google Scholar
  3. 3.
    D.R. Jones, K.C. Lawrence, S.C. Yoon, G.W. Heitschmidt, Poult. Sci. 89, 761 (2010)CrossRefGoogle Scholar
  4. 4.
    USDA, Agricultural Marketing Service, United States standards, grades, and weight classes for shell eggs. AMS-56 (2000)Google Scholar
  5. 5.
    USDA, Agricultural Marketing Service, “Egg-grading manual,” Agricultural Handbook Number 75, (2000)Google Scholar
  6. 6.
    USDA, Agricultural Marketing Service, Regulations governing the voluntary grading of shell eggs. 7 CFR Part 56 (2008)Google Scholar
  7. 7.
    K.C. Lawrence, S.C. Yoon, G.W. Heitschmidt, D.R. Jones, B. Park, Sens. Instrum. Food Qual. Saf. 2, 116 (2008)CrossRefGoogle Scholar
  8. 8.
    K.C. Lawrence, S.C. Yoon, D.R. Jones, G.W. Heitschmidt, B. Park, W.R. Windham, Trans. ASABE 52, 983 (2009)Google Scholar
  9. 9.
    K.C. Lawrence, Y.C. Yoon, G.W. Heitschmidt, D.R. Jones, B. Park, V.A. Savage, U.S. Patent 7,796,241, 2010Google Scholar
  10. 10.
    X. Deng, W. Wang, H. Chen, H. Xie, Comput. Electron. Agric. 70, 135 (2010)CrossRefGoogle Scholar
  11. 11.
    B. DeKetelaere, P. Coucke, J. DeBaerdemaeker, J. Agric. Eng. Res. 76(2), 157 (2000)CrossRefGoogle Scholar
  12. 12.
    B. DeKetelaere, F. Bamelis, B. Kemps, E. Decuypere, J. Debaerdemaeker, World’s Poult. Sci. J. 60, 289 (2004)CrossRefGoogle Scholar
  13. 13.
    J. Lin, Y. Lin, M. Hsieh, C. Yang, ASAE Paper No. 016032. St. Joseph, MI (2001)Google Scholar
  14. 14.
    P. Coucke, Unpublished PhD Dissertation, Katholieke Universiteit Leuven, 1998Google Scholar
  15. 15.
    G.N. Bliss, U.S. Patent 3,744,299, 1973Google Scholar
  16. 16.
    R.T. Elster, J.W. Goodrum, Trans. ASAE 34(1), 307 (1991)Google Scholar
  17. 17.
    J.W. Goodrum, R.T. Elster, Trans. ASAE 35(4), 1323 (1992)Google Scholar
  18. 18.
    A.M. Tekalp, in Digital Video Processing (Prentice Hall, Upper Saddle River, 1995)Google Scholar
  19. 19.
    A. Yilmaz, O. Javed, M. Shah, ACM Comput. Surv. 38(4), 1–45 (2006)CrossRefGoogle Scholar
  20. 20.
  21. 21.
    L. Tang, L.F. Tian, Trans. ASABE 51(3), 1079 (2008)Google Scholar
  22. 22.
    Y. Yang, M.D. Schrock, Trans. ASABE 36(4), 1229 (1993)Google Scholar
  23. 23.
    J.M. Sanchiz, F. Pla, J.M. Marchant, SPIE Conference on Enhanced and Synthetic Vision, p. 287, 1998Google Scholar
  24. 24.
    F. Cointault, P. Sarrazin, M. Paindavoine, Precis. Agric. 4, 279 (2003)CrossRefGoogle Scholar
  25. 25.
    W. Hu, T. Tan, L. Wang, S. Maybank, IEEE Trans. Syst. Man Cybern. C 34(3), 334 (2004)CrossRefGoogle Scholar
  26. 26.
    H.L. Chou, C.C. Tseng, U.S. Patent Application Pub. No. 2011/0157392 A1, 2011Google Scholar
  27. 27.
    H. V. Poor, in An Introduction to Signal Detection and Estimation (Springer, New York, NY)Google Scholar
  28. 28.
    M. Gonen, SUGI 31 Proceedings, Paper 210-31, 2006Google Scholar
  29. 29.
    N. Ancona, G. Cicirelli, E. Stella, A. Distante, IEEE ICPR, 2, p. 426, 2002Google Scholar
  30. 30.
    E.F. Schisterman, N.J. Perkins, A. Liu, H. Bondell, Epidemiology 16(1), 73 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (Outside the USA) 2012

Authors and Affiliations

  • Seung Chul Yoon
    • 1
  • Kurt C. Lawrence
    • 1
  • Deana R. Jones
    • 1
  • Gerald W. Heitschmidt
    • 1
  • Bosoon Park
    • 1
  1. 1.Richard Russell Research CenterU.S. Department of Agriculture, Agricultural Research ServiceAthensUSA

Personalised recommendations