Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging—Part II. Performance of a prototype

Hyperspectral and Multispectral Imaging

Abstract

This paper reports on the development and evaluation of methods and algorithms for detecting both external and internal quality of pickling cucumbers using the hyperspectral reflectance and transmittance images acquired by an online prototype described in a previous paper [1]. Experiments were performed in 2 years on ‘Journey’ pickling cucumbers, some of which were subjected to mechanical stress to induce internal defect in seed cavity. Hyperspectral images of the ‘Journey’ pickling cucumbers were collected under reflectance, transmittance, and their combination modes. Partial least squares analysis was performed on spectra extracted from the hyperspectral images to predict firmness, color, and the presence of internal defect. The system performed well on predicting skin color (chroma and hue) with the coefficient of determination (R2) ranging between 0.75 and 0.77; however, it had poor prediction of fruit firmness. Transmittance data in the spectral region of 675–1,000 nm provided the best detection of internal defect for the test pickling cucumbers, with the detection accuracy up to 99%. Up to the best four wavelength combinations were identified using linear discriminant analysis for internal defect detection. The hyperspectral imaging technique can be used for simultaneous detection of color, size, and internal defect on pickling cucumbers.

Keywords

Hyperspectral imaging Grading Sorting Pickling cucumbers Quality Defect 

References

  1. 1.
    D.P. Ariana, R. Lu, Sens. Instrumen. Food Qual. Saf. (2008). doi:10.1007/s11694-008-9057-x
  2. 2.
    J.A. Abbott, R. Lu, B.L. Upchurch, R.L. Stroshine, Hortic. Rev. (Am. Soc. Hortic. Sci.) 20, 1 (1997)Google Scholar
  3. 3.
    B. Park, K.C. Lawrence, W.R. Windham, D.P. Smith, J. Food Eng. 75, 340 (2006). doi:10.1016/j.jfoodeng.2005.03.060 CrossRefGoogle Scholar
  4. 4.
    D.P. Ariana, R. Lu, Trans. ASABE 51, 705 (2008)Google Scholar
  5. 5.
    A.R. Miller, T.J. Kelley, B.D. White, J. Am. Soc. Hortic. Sci. 120, 1063 (1995)Google Scholar
  6. 6.
    J. Lamertyn, A. Peirs, J.D. Baerdemaeker, B. Nicolai, Postharvest Biol. Technol. 18, 121 (2000). doi:10.1016/S0925-5214(99)00071-X CrossRefGoogle Scholar
  7. 7.
    P.N. Schaare, D.G. Fraser, Postharvest Biol. Technol. 20, 175 (2000). doi:10.1016/S0925-5214(00)00130-7 CrossRefGoogle Scholar
  8. 8.
    Y.W. Seo, S·H. Noh, K.J. Lee, ASABE Paper No. 066121 (ASABE, St. Joseph, MI, USA, 2006)Google Scholar
  9. 9.
    V.A. McGlone, P.J. Martinsen, C.J. Clark, R.B. Jordan, Postharvest Biol. Technol. 37, 142 (2005). doi:10.1016/j.postharvbio.2005.04.011 CrossRefGoogle Scholar
  10. 10.
    D. Han, R. Tu, C. Lu, X. Liu, Z. Wen, Food Control 17, 604 (2006). doi:10.1016/j.foodcont.2005.03.006 CrossRefGoogle Scholar
  11. 11.
    S. Teerachaichayut, K.Y. Kil, A. Terdwongworakul, W. Thanapase, Y. Nakanishi, Postharvest Biol. Technol. 43, 202 (2007). doi:10.1016/j.postharvbio.2006.09.007 CrossRefGoogle Scholar
  12. 12.
    J. Qin, R. Lu, Trans. ASAE 48, 1963 (2005)Google Scholar
  13. 13.
    P. Chen, J. Food Process Eng. 2, 307 (1978). doi:10.1111/j.1745-4530.1978.tb00213.x CrossRefGoogle Scholar
  14. 14.
    R.L. Thompson, H.P. Fleming, D.D. Hamann, R.J. Monroe, J. Texture Stud. 13, 311 (1982). doi:10.1111/j.1745-4603.1982.tb00886.x CrossRefGoogle Scholar
  15. 15.
    Y.H. Hui, in Handbook of vegetable preservation and processing, Chapter 14, ed. by Y.H. Hui, S. Ghazala, D.M. Graham, K.D. Murrell, W.-K. Nip (Marcel Dekker, New York, 2004), pp. 231–250Google Scholar
  16. 16.
    I. Kavdir, R. Lu, D. Ariana, A. Ngouajio, Postharvest Biol. Technol. 44, 165 (2007). doi:10.1016/j.postharvbio.2006.09.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Sugarbeet and Bean Research Unit, USDA Agricultural Research ServiceMichigan State UniversityEast LansingUSA

Personalised recommendations