Advertisement

A pyruvate dehydrogenase-based amperometric biosensor for assessing pungency in onions (Allium cepa L.)

  • Louise A. Abayomi
  • Leon A. Terry
Original Paper

Abstract

A disposable prototype electrochemical biosensor was constructed using pyruvate dehydrogenase immobilised on mediated Meldolas Blue electrodes to determine pungency in onions (Allium cepa L.). The optimum operating potential was +50 mV vs. Ag/AgCl reference/counter electrode. The biosensor was able to differentiate between mild and pungent bulbs with pyruvate concentrations ranging between ≈4 and 8 mM in freshly extracted juices. Resolution was 0.5 mM and thus was comparable to the standard Schwimmer and Weston-based colorimetric assay currently employed by industry for determining pungency in macerated onion tissue.

Keywords

Meldolas Blue Pyruvate Quality assurance 

Notes

Acknowledgement

This work formed part of a larger HortLink project (HL0164LFV; defining quality assurance for sweet onions with rapid biosensor analysis) and is financially supported by the UK Government (Department for Environment, Food and Rural Affairs; Defra) and UK industry representatives (Allium and Brassica Centre Ltd. (ABC), Applied Enzyme Technology Ltd. (AET), Gwent Electronic Materials Ltd. (GEM), F. B. Parrish and Son Ltd., Bedfordshire Growers Ltd., Rustler Produce Ltd., Moulton Bulb Co. Ltd., G’s Marketing Ltd., Sainsbury’s Supermarket Plc., Tesco Stores Ltd. and Waitrose Ltd.). Special appreciation is extended to David O’Connor (ABC) for organising plant material and Robin Pittson (GEM) for the supply of sensors. The technical support of Mr. Allen Hilton, Cranfield University is gratefully acknowledged.

References

  1. 1.
    J.E. Lancaster, M.L. Shaw, W.M. Randle, J. Sci. Food Agric. 78, 367 (1998)CrossRefGoogle Scholar
  2. 2.
    S. Schwimmer, W.J. Weston, J. Agric. Food Chem. 9, 301 (1961)CrossRefGoogle Scholar
  3. 3.
    M.M. Wall, J.N. Corgan, HortScience 27, 1029 (1992)Google Scholar
  4. 4.
    K.S. Yoo, L.M. Pike, Sci. Hortic. 89, 249 (2001)CrossRefGoogle Scholar
  5. 5.
    T. Crowther, H. Collin, B. Smith, B. Tomsett, D. O’Connor, M. Jones, J. Sci. Food Agric. 85, 112 (2005)CrossRefGoogle Scholar
  6. 6.
    M.J. Havey, M. Cantwell, M.J. Jones, et al., HortScience 37, 1086 (2002)Google Scholar
  7. 7.
    W.M. Randle, M.L. Bussard, HortScience 28, 60 (1993)Google Scholar
  8. 8.
    L.A. Terry, S.F. White, L.J. Tigwell, J. Agric. Food Chem. 53, 1309 (2005)CrossRefGoogle Scholar
  9. 9.
    M. Mascini, F. Mazzei, Anal. Chim. Acta 192, 9 (1987)CrossRefGoogle Scholar
  10. 10.
    J. Kulys, L. Wang, N. Daugvilaite, Anal. Chim. Acta 265, 15 (1992)CrossRefGoogle Scholar
  11. 11.
    W. Zhang, H. Chang, G.A. Rechnitz, Anal. Chim. Acta 350, 59 (1997)CrossRefGoogle Scholar
  12. 12.
    W. Bergman, R. Rudolph, U. Spohn, Anal. Chim. Acta 394, 233 (1999)CrossRefGoogle Scholar
  13. 13.
    F. Mizutani, Y. Sato, T. Sawaguchi, S. Iijima, Electrochim. Acta 45, 2945 (2000)CrossRefGoogle Scholar
  14. 14.
    S.D. Sprules, I.C. Hartley, R. Wedge, J.P. Hart, R. Pittson, Anal. Chim. Acta 329, 215 (1996)CrossRefGoogle Scholar
  15. 15.
    R. Wedge, R.M. Pemberton, J.P. Hart, R. Luxton, Analysis 27, 570 (1999)CrossRefGoogle Scholar
  16. 16.
    A. Vasilescu, S. Andreescu, C. Bala, S.C. Litescu, T. Noguer, J. Marty, Biosens. Bioelectron. 18, 781 (2003)CrossRefGoogle Scholar
  17. 17.
    D.C. Lupu, G. Palleschi, Anal. Chim. Acta 513, 67 (2004)CrossRefGoogle Scholar
  18. 18.
    L.A. Abayomi, L.A. Terry, S.F. White, P.J. Warner, Biosens. Bioelectron. 21, 2176 (2006)Google Scholar
  19. 19.
    K. Mikki, H. Kinoshita, Y. Yamamoto, N. Taniguchi, T. Ikeda, J. Electrochem. Soc. Jpn. 63, 1121 (1995)Google Scholar
  20. 20.
    I.H. Fine, L.A. Costello, Methods Enzymol. 6, 958 (1963)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Plant Science LaboratoryCranfield UniversityBedfordshireUK

Personalised recommendations