Advertisement

Systems and Synthetic Biology

, Volume 9, Issue 1–2, pp 19–31 | Cite as

Mathematical model of flagella gene expression dynamics in Salmonella enterica serovar typhimurium

  • Kirti Jain
  • Amit Pradhan
  • Chaitanya Mokashi
  • Supreet Saini
Research Article

Abstract

Flagellar assembly in Salmonella is controlled by an intricate genetic and biochemical network. This network comprises of a number of inter-connected feedback loops, which control the assembly process dynamically. Critical among these are the FliA–FlgM feedback, FliZ-mediated positive feedback, and FliT-mediated negative feedback. In this work, we develop a mathematical model to track the dynamics of flagellar gene expression in Salmonella. Analysis of our model demonstrates that the network is wired to not only control the transition of the cell from a non-flagellated to a flagellated state, but to also control dynamics of gene expression during cell division. Further, we predict that FliZ encoded in the flagellar regulon acts as a critical secretion-dependent molecular link between flagella and Salmonella Pathogenicity Island 1 gene expression. Sensitivity analysis of the model demonstrates that the flagellar regulatory network architecture is extremely robust to mutations.

Keywords

Flagella Salmonella T3SS Gene regulation 

Notes

Acknowledgments

This work was funded by the Innovative Young Biotechnologist Award (IYBA) 2010 program of the Department of Biotechnology, Ministry of Science and Technology, Government of India.

Supplementary material

11693_2015_9160_MOESM1_ESM.docx (106 kb)
Supplementary material 1 (DOCX 105 kb)

References

  1. Aizawa SI, Kubori T (1998) Bacterial flagellation and cell division. Genes Cells 3:625–634CrossRefPubMedGoogle Scholar
  2. Aldridge P, Karlinsey J, Hughes KT (2003) The type III secretion chaperone FlgN regulates flagellar assembly via a negative feedback loop containing its chaperone substrates FlgK and FlgL. Mol Microbiol 49:1333–1345CrossRefPubMedGoogle Scholar
  3. Aldridge PD, Karlinsey JE, Aldridge C, Birchall C, Thompson D, Yagasaki J, Hughes KT (2006) The flagellar-specific transcription factor, sigma28, is the type III secretion chaperone for the flagellar-specific anti-sigma28 factor FlgM. Genes Dev 20:2315–2326CrossRefPubMedCentralPubMedGoogle Scholar
  4. Aldridge C, Poonchareon K, Saini S, Ewen T, Soloyva A, Rao CV, Imada K, Minamino T, Aldridge PD (2010) The interaction dynamics of a negative feedback loop regulates flagellar number in Salmonella enterica serovar typhimurium. Mol Microbiol 78:1416–1430. doi: 10.1111/j.1365-2958.2010.07415.x CrossRefPubMedGoogle Scholar
  5. Auvray F, Thomas J, Fraser GM, Hughes C (2001) Flagellin polymerisation control by a cytosolic export chaperone. J Mol Biol 308:221–229CrossRefPubMedCentralPubMedGoogle Scholar
  6. Barembruch C, Hengge R (2007) Cellular levels and activity of the flagellar sigma factor FliA of Escherichia coli are controlled by FlgM-modulated proteolysis. Mol Microbiol 65:76–89 Epub 2007 May 2030CrossRefPubMedGoogle Scholar
  7. Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54 Epub 2002 Dec 2011CrossRefPubMedGoogle Scholar
  8. Brandman O, Ferrell JE Jr, Li R, Meyer T (2005) Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310:496–498CrossRefPubMedCentralPubMedGoogle Scholar
  9. Burton RF (2000) Physiology by numbers: an encouragement to quantitative thinking, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. Chadsey MS, Hughes KT (2001) A multipartite interaction between Salmonella transcription factor sigma28 and its anti-sigma factor FlgM: implications for sigma28 holoenzyme destabilization through stepwise binding. J Mol Biol 306:915–929CrossRefPubMedGoogle Scholar
  11. Chadsey MS, Karlinsey JE, Hughes KT (1998) The flagellar anti-sigma factor FlgM actively dissociates Salmonella typhimurium sigma28 RNA polymerase holoenzyme. Genes Dev 12:3123–3136CrossRefPubMedCentralPubMedGoogle Scholar
  12. Chevance FF, Hughes KT (2008) Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6:455–465CrossRefPubMedGoogle Scholar
  13. Chilcott GS, Hughes KT (2000) Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64:694–708CrossRefPubMedCentralPubMedGoogle Scholar
  14. Chubiz JE, Golubeva YA, Lin D, Miller LD, Slauch JM (2010) FliZ regulates expression of the Salmonella pathogenicity island 1 invasion locus by controlling HilD protein activity in Salmonella enterica serovar typhimurium. J Bacteriol 192:6261–6270. doi: 10.1128/JB.00635-00610 CrossRefPubMedCentralPubMedGoogle Scholar
  15. Clarke MB, Sperandio V (2005) Transcriptional regulation of flhDC by QseBC and sigma (FliA) in enterohaemorrhagic Escherichia coli. Mol Microbiol 57:1734–1749CrossRefPubMedGoogle Scholar
  16. Clegg S, Hughes KT (2002) FimZ is a molecular link between sticking and swimming in Salmonella enterica serovar typhimurium. J Bacteriol 184:1209–1213CrossRefPubMedCentralPubMedGoogle Scholar
  17. Ellermeier CD, Slauch JM (2003) RtsA and RtsB coordinately regulate expression of the invasion and flagellar genes in Salmonella enterica serovar typhimurium. J Bacteriol 185:5096–5108CrossRefPubMedCentralPubMedGoogle Scholar
  18. Freeman M (2000) Feedback control of intercellular signalling in development. Nature 408:313–319CrossRefPubMedGoogle Scholar
  19. Galeva A, Moroz N, Yoon YH, Hughes KT, Samatey FA, Kostyukova AS (2014) Bacterial flagellin-specific chaperone FliS interacts with anti-sigma factor FlgM. J Bacteriol 196:1215–1221. doi: 10.1128/JB.01278-01213 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Hughes KT, Gillen KL, Semon MJ, Karlinsey JE (1993) Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262:1277–1280CrossRefPubMedGoogle Scholar
  21. Ikebe T, Iyoda S, Kutsukake K (1999a) Promoter analysis of the class 2 flagellar operons of Salmonella. Genes Genet Syst 74:179–183CrossRefPubMedGoogle Scholar
  22. Ikebe T, Iyoda S, Kutsukake K (1999b) Structure and expression of the fliA operon of Salmonella typhimurium. Microbiology 145:1389–1396CrossRefPubMedGoogle Scholar
  23. Iyoda S, Kamidoi T, Hirose K, Kutsukake K, Watanabe H (2001) A flagellar gene fliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar typhimurium. Microb Pathog 30:81–90CrossRefPubMedGoogle Scholar
  24. Jones CJ, Aizawa S (1991) The bacterial flagellum and flagellar motor: structure, assembly and function. Adv Microb Physiol 32:109–172CrossRefPubMedGoogle Scholar
  25. Kage H, Takaya A, Ohya M, Yamamoto T (2008) Coordinated regulation of expression of Salmonella pathogenicity island 1 and flagellar type III secretion systems by ATP-dependent ClpXP protease. J Bacteriol 190:2470–2478. doi: 10.1128/JB.01385-01307 CrossRefPubMedCentralPubMedGoogle Scholar
  26. Kalir S, Mangan S, Alon U (2005) A coherent feed-forward loop with a SUM input function prolongs flagella expression in Escherichia coli. Mol Syst Biol 1(2005):0006 Epub 2005 Mar 2029PubMedGoogle Scholar
  27. Karlinsey JE, Lonner J, Brown KL, Hughes KT (2000a) Translation/secretion coupling by type III secretion systems. Cell 102:487–497CrossRefPubMedGoogle Scholar
  28. Karlinsey JE, Tanaka S, Bettenworth V, Yamaguchi S, Boos W, Aizawa SI, Hughes KT (2000b) Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol Microbiol 37:1220–1231CrossRefPubMedGoogle Scholar
  29. Kawagishi I, Muller V, Williams AW, Irikura VM, Macnab RM (1992) Subdivision of flagellar region III of the Escherichia coli and Salmonella typhimurium chromosomes and identification of two additional flagellar genes. J Gen Microbiol 138:1051–1065CrossRefPubMedGoogle Scholar
  30. Kim D, Kwon YK, Cho KH (2007) Coupled positive and negative feedback circuits form an essential building block of cellular signaling pathways. BioEssays 29:85–90CrossRefPubMedGoogle Scholar
  31. Ko M, Park C (2000) Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli. J Mol Biol 303:371–382CrossRefPubMedGoogle Scholar
  32. Koirala S, Mears P, Sim M, Golding I, Chemla YR, Aldridge PD, Rao CV (2014) A nutrient-tunable bistable switch controls motility in Salmonella enterica serovar typhimurium. mBio 5:e01611–e01614CrossRefPubMedCentralPubMedGoogle Scholar
  33. Kutsukake K (1997) Autogenous and global control of the flagellar master operon, flhD, in Salmonella typhimurium. Mol Gen Genet 254:440–448CrossRefPubMedGoogle Scholar
  34. Kutsukake K, Ide N (1995) Transcriptional analysis of the flgK and fliD operons of Salmonella typhimurium which encode flagellar hook-associated proteins. Mol Gen Genet 247:275–281CrossRefPubMedGoogle Scholar
  35. Kutsukake K, Iino T (1994) Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium. J Bacteriol 176:3598–3605PubMedCentralPubMedGoogle Scholar
  36. Kutsukake K, Ikebe T, Yamamoto S (1999) Two novel regulatory genes, fliT and fliZ, in the flagellar regulon of Salmonella. Genes Genet Syst 74:287–292CrossRefPubMedGoogle Scholar
  37. Lostroh CP, Lee CA (2001) The Salmonella pathogenicity island-1 type III secretion system. Microbes Infect 3:1281–1291CrossRefPubMedGoogle Scholar
  38. Lucas RL, Lostroh CP, DiRusso CC, Spector MP, Wanner BL, Lee CA (2000) Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar typhimurium. J Bacteriol 182:1872–1882CrossRefPubMedCentralPubMedGoogle Scholar
  39. Macnab RM (1977) Bacterial flagella rotating in bundles: a study in helical geometry. Proc Natl Acad Sci USA 74:221–225CrossRefPubMedCentralPubMedGoogle Scholar
  40. Macnab RM (1999) The bacterial flagellum: reversible rotary propellor and type III export apparatus. J Bacteriol 181:7149–7153PubMedCentralPubMedGoogle Scholar
  41. Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57:77–100 Epub 2003 May 2001CrossRefPubMedGoogle Scholar
  42. Mariconda S, Wang Q, Harshey RM (2006) A mechanical role for the chemotaxis system in swarming motility. Mol Microbiol 60:1590–1602CrossRefPubMedGoogle Scholar
  43. Mitrophanov AY, Groisman EA (2008) Positive feedback in cellular control systems. BioEssays 30:542–555. doi: 10.1002/bies.20769 CrossRefPubMedCentralPubMedGoogle Scholar
  44. Muskotal A, Kiraly R, Sebestyen A, Gugolya Z, Vegh BM, Vonderviszt F (2006) Interaction of FliS flagellar chaperone with flagellin. FEBS Lett 580:3916–3920 Epub 2006 Jun 3921CrossRefPubMedGoogle Scholar
  45. Mytelka DS, Chamberlin MJ (1996) Escherichia coli fliAZY operon. J Bacteriol 178:24–34PubMedCentralPubMedGoogle Scholar
  46. Ohnishi K, Kutsukake K, Suzuki H, Lino T (1992) A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an antisigma factor inhibits the activity of the flagellum-specific sigma factor, sigma F. Mol Microbiol 6:3149–3157CrossRefPubMedGoogle Scholar
  47. Paulsson J (2005) Models of stochastic gene expression. Physics of Life Reviews 2:157–175CrossRefGoogle Scholar
  48. Rosu V, Hughes KT (2006) sigma28-dependent transcription in Salmonella enterica is independent of flagellar shearing. J Bacteriol 188:5196–5203CrossRefPubMedCentralPubMedGoogle Scholar
  49. Saini S, Rao CV (2010) SprB is the molecular link between Salmonella pathogenicity island 1 (SPI1) and SPI4. J Bacteriol 192:2459–2462. doi: 10.1128/JB.00047-00010 CrossRefPubMedCentralPubMedGoogle Scholar
  50. Saini S, Brown JD, Aldridge PD, Rao CV (2008) FliZ is a posttranslational activator of FlhD4C2-dependent flagellar gene expression. J Bacteriol 190:4979–4988. doi: 10.1128/JB.01996-01907 CrossRefPubMedCentralPubMedGoogle Scholar
  51. Saini S, Koirala S, Floess E, Mears PJ, Chemla YR, Golding I, Aldridge C, Aldridge PD, Rao CV (2010a) FliZ induces a kinetic switch in flagellar gene expression. J Bacteriol 192:6477–6481CrossRefPubMedCentralPubMedGoogle Scholar
  52. Saini S, Slauch JM, Aldridge PD, Rao CV (2010b) Role of cross talk in regulating the dynamic expression of the flagellar Salmonella pathogenicity island 1 and type 1 fimbrial genes. J Bacteriol 192:5767–5777. doi: 10.1128/JB.00624-00610 CrossRefPubMedCentralPubMedGoogle Scholar
  53. Saini S, Floess E, Aldridge C, Brown J, Aldridge PD, Rao CV (2011) Continuous control of flagellar gene expression by the sigma28-FlgM regulatory circuit in Salmonella enterica. Mol Microbiol 79:264–278. doi: 10.1111/j.1365-2958.2010.07444.x CrossRefPubMedGoogle Scholar
  54. Shin D, Lee EJ, Huang H, Groisman EA (2006) A positive feedback loop promotes transcription surge that jump-starts Salmonella virulence circuit. Science 314:1607–1609CrossRefPubMedGoogle Scholar
  55. Silverman M, Simon M (1974) Flagellar rotation and the mechanism of bacterial motility. Nature 249:73–74CrossRefPubMedGoogle Scholar
  56. Takaya A, Erhardt M, Karata K, Winterberg K, Yamamoto T, Hughes KT (2012) YdiV: a dual function protein that targets FlhDC for ClpXP-dependent degradation by promoting release of DNA-bound FlhDC complex. Mol Microbiol 83:1268–1284. doi: 10.1111/j.1365-2958.2012.08007.x CrossRefPubMedCentralPubMedGoogle Scholar
  57. Tanabe Y, Wada T, Ono K, Abo T, Kutsukake K (2011) The transcript from the sigma(28)-dependent promoter is translationally inert in the expression of the sigma(28)-encoding gene fliA in the fliAZ operon of Salmonella enterica serovar typhimurium. J Bacteriol 193:6132–6141. doi: 10.1128/JB.05909-05911 CrossRefPubMedCentralPubMedGoogle Scholar
  58. Teplitski M, Goodier RI, Ahmer BM (2003) Pathways leading from BarA/SirA to motility and virulence gene expression in Salmonella. J Bacteriol 185:7257–7265CrossRefPubMedCentralPubMedGoogle Scholar
  59. Thomas R, Thieffry D, Kaufman M (1995) Dynamical behaviour of biological regulatory networks–I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull Math Biol 57:247–276CrossRefPubMedGoogle Scholar
  60. Tomoyasu T, Ohkishi T, Ukyo Y, Tokumitsu A, Takaya A, Suzuki M, Sekiya K, Matsui H, Kutsukake K, Yamamoto T (2002) The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar typhimurium. J Bacteriol 184:645–653CrossRefPubMedCentralPubMedGoogle Scholar
  61. Wada T, Tanabe Y, Kutsukake K (2011) FliZ acts as a repressor of the ydiV gene, which encodes an anti-FlhD4C2 factor of the flagellar regulon in Salmonella enterica serovar typhimurium. J Bacteriol 193:5191–5198. doi: 10.1128/JB.05441-05411 CrossRefPubMedCentralPubMedGoogle Scholar
  62. Wang S, Fleming RT, Westbrook EM, Matsumura P, McKay DB (2006) Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription. J Mol Biol 355:798–808 Epub 2005 Nov 2022CrossRefPubMedGoogle Scholar
  63. Wei BL, Brun-Zinkernagel AM, Simecka JW, Pruss BM, Babitzke P, Romeo T (2001) Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40:245–256CrossRefPubMedGoogle Scholar
  64. Wu KH, Wang KC, Lee LW, Huang YN, Yeh KS (2012) A constitutively mannose-sensitive agglutinating Salmonella enterica subsp enterica serovar typhimurium strain, carrying a transposon in the fimbrial usher gene stbC, exhibits multidrug resistance and flagellated phenotypes. ScientificWorldJournal 2012:280264. doi: 10.1100/2012/280264 Epub 282012 Mar 280261PubMedCentralPubMedGoogle Scholar
  65. Yamamoto S, Kutsukake K (2006) FliT acts as an anti-FlhD2C2 factor in the transcriptional control of the flagellar regulon in Salmonella enterica serovar typhimurium. J Bacteriol 188:6703–6708CrossRefPubMedCentralPubMedGoogle Scholar
  66. Yanagihara S, Iyoda S, Ohnishi K, Iino T, Kutsukake K (1999) Structure and transcriptional control of the flagellar master operon of Salmonella typhimurium. Genes Genet Syst 74:105–111CrossRefPubMedGoogle Scholar
  67. Yokoseki T, Kutsukake K, Ohnishi K, Iino T (1995) Functional analysis of the flagellar genes in the fliD operon of Salmonella typhimurium. Microbiology 141:1715–1722CrossRefPubMedGoogle Scholar
  68. Yonekura K, Maki-Yonekura S, Namba K (2003) Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424:643–650CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Kirti Jain
    • 1
  • Amit Pradhan
    • 1
  • Chaitanya Mokashi
    • 1
  • Supreet Saini
    • 1
  1. 1.Department of Chemical EngineeringIndian Institute of Technology BombayPowai, MumbaiIndia

Personalised recommendations