Systems and Synthetic Biology

, Volume 4, Issue 3, pp 157–179 | Cite as

A computational study of liposome logic: towards cellular computing from the bottom up

  • James Smaldon
  • Francisco J. Romero-Campero
  • Francisco Fernández Trillo
  • Marian Gheorghe
  • Cameron Alexander
  • Natalio Krasnogor
Research Article

Abstract

In this paper we propose a new bottom-up approach to cellular computing, in which computational chemical processes are encapsulated within liposomes. This “liposome logic” approach (also called vesicle computing) makes use of supra-molecular chemistry constructs, e.g. protocells, chells, etc. as minimal cellular platforms to which logical functionality can be added. Modeling and simulations feature prominently in “top-down” synthetic biology, particularly in the specification, design and implementation of logic circuits through bacterial genome reengineering. The second contribution in this paper is the demonstration of a novel set of tools for the specification, modelling and analysis of “bottom-up” liposome logic. In particular, simulation and modelling techniques are used to analyse some example liposome logic designs, ranging from relatively simple NOT gates and NAND gates to SR-Latches, D Flip-Flops all the way to 3 bit ripple counters. The approach we propose consists of specifying, by means of P systems, gene regulatory network-like systems operating inside proto-membranes. This P systems specification can be automatically translated and executed through a multiscaled pipeline composed of dissipative particle dynamics (DPD) simulator and Gillespie’s stochastic simulation algorithm (SSA). Finally, model selection and analysis can be performed through a model checking phase. This is the first paper we are aware of that brings to bear formal specifications, DPD, SSA and model checking to the problem of modeling target computational functionality in protocells. Potential chemical routes for the laboratory implementation of these simulations are also discussed thus for the first time suggesting a potentially realistic physiochemical implementation for membrane computing from the bottom-up.

Keywords

Simulation and modelling Vesicle computing Cellular computing Synthetic biology Dissipative particle dynamics Stochastic simulation Model checking Logic gates Chells  Protocells 

References

  1. Abelson H, Allen D, Coore D, Hanson C, Homsy G, Knight TF Jr, Nagpal R, Rauch E, Sussman GJ, Weiss R (2000) Amorphous computing. Commun ACM 43(5):74–82CrossRefGoogle Scholar
  2. Ahmed F, Discher DE (2004) Self-porating polymersomes of peg-pla and peg-pcl: hydrolysis-triggered controlled release vesicles. J Control Release 96(1):37–53. doi:10.1016/j.jconrel.2003.12.021 CrossRefPubMedGoogle Scholar
  3. Alon U (2007) An introduction to systems biology. CRC Press, Boca RatonGoogle Scholar
  4. Amos M (ed) (2004) Cellular computing. Oxford University Press, OxfordGoogle Scholar
  5. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2Google Scholar
  6. Asoh Ta, Akashi M (2009) Hydrogel logic gates using gradient semi-ipns. Chem Commun 24(24):3548–3550CrossRefGoogle Scholar
  7. Basu S, Mehreja R, Thiberge S, Chen MT, Weiss R (2004) Spatiotemporal control of gene expression with pulse-generating networks. Proc Natl Acad Sci 101(17):6355–6360CrossRefPubMedGoogle Scholar
  8. Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434(7037):1130–1134CrossRefPubMedGoogle Scholar
  9. Baumgardner J, Acker K, Adefuye O, Crowley S, DeLoache W, Dickson J, Heard L, Martens A, Morton N, Ritter M, Shoecraft A, Treece J, Unzicker M, Valencia A, Waters M, Campbell A, Heyer L, Poet J, Eckdahl T (2009) Solving a hamiltonian path problem with a bacterial computer. J Biol Eng 3(1):11CrossRefPubMedGoogle Scholar
  10. Cronin L, Krasnogor N, Davis BG, Alexander C, Robertson N, Steinke JHG, Schroeder SLM, Khlobystov AN, Cooper G, Gardner PM, Siepmann P, Whitaker BJ, Marsh D (2006) The imitation game-a computational chemical approach to recognizing life. Nat Biotechnol 24(10):1203–1206CrossRefPubMedGoogle Scholar
  11. de Silva AP, Uchiyama S (2007) Molecular logic and computing. Nat Nano 2(7):399–410CrossRefGoogle Scholar
  12. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338CrossRefPubMedGoogle Scholar
  13. Endy D (2005) Foundations for engineering biology. Nature 438(7067):449–453CrossRefPubMedGoogle Scholar
  14. Español P, Warren P (1995) Statistical-mechanics of dissipative particle dynamics. Europhys Lett 30:191–196CrossRefGoogle Scholar
  15. Fisher J, Henzinger T (2007) Executable cell biology. Nat Biotechnol 25:1239–1249CrossRefPubMedGoogle Scholar
  16. Gardner P, Winzer K, Davis B (2009) Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nat Chem 1:377–383CrossRefGoogle Scholar
  17. Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55CrossRefPubMedGoogle Scholar
  18. Groot RD, Rabone KL (2001) Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys J 81:725–736CrossRefPubMedGoogle Scholar
  19. Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423–4435CrossRefGoogle Scholar
  20. Gunnlaugsson T, Donail DAM, Parker D (2000) Luminescent molecular logic gates: the two-input inhibit (inh) function. Chem Commun 1(1):93–94CrossRefGoogle Scholar
  21. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nat Impacts 402:47–52Google Scholar
  22. Heinemann M, Panke S (2006) Synthetic biology—putting engineering into biology. Bioinformatics 22(22):2790–2799CrossRefPubMedGoogle Scholar
  23. Kim Y, Tewari M, Pajerowski JD, Cai S, Sen S, Williams J, Sirsi S, Lutz G, Discher DE (2009) Polymersome delivery of sirna and antisense oligonucleotides. J Control Release 134(2):132–140. doi:10.1016/j.jconrel.2008.10.020 CrossRefPubMedGoogle Scholar
  24. Knight T (2003) Idempotent vector design for standard assembly of biobricks. http://hdl.handle.net/1721.1/21168
  25. Kranenburg M, Nicolas JP, Smit B (2004) Comparison of mesoscopic phospholipid-water models. Phys Chem Chem Phys 6(16):4142–4151CrossRefGoogle Scholar
  26. Kwiatkowska M, Norman G, Parker D (2002) Prism: probabilistic symbolic model checkerGoogle Scholar
  27. Kwiatkowska M, Norman G, Parker D (2009) Probabilistic model checking for systems biology. Symb Syst Biol (to appear)Google Scholar
  28. Lomas H, Canton I, MacNeil S, Du J, Armes S, Ryan A, Lewis A, Battaglia G (2007) Biomimetic ph sensitive polymersomes for efficient dna encapsulation and delivery. Adv Mater 19(23):4238–4243. 10.1002/adma.200700941 Google Scholar
  29. Luisi P, Ferri F, Stano P (2006) Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93(1):1–13CrossRefPubMedGoogle Scholar
  30. MacDiarmid J, Amaro-Mugridge N, Madrid-Weiss J, Sedliarou I, Wetzel S, Kochar K, Brahmbhatt V, Phillips L, Pattison S, Petti C, Stillman B, Graham R, Brahmbhatt H (2009) Sequential treatment of drug-resistant tumors with targeted minicells containing sirna or a cytotoxic drug. Nat Biotechnol 27(7):643–651CrossRefPubMedGoogle Scholar
  31. Magri DC (2009) A fluorescent and logic gate driven by electrons and protons. New J Chem 33(3):457–461CrossRefGoogle Scholar
  32. Mallavarapu A, Thomson M, Ullian B, Gunawardena J (2009) Programming with models: modularity and abstraction provide powerful capabilities for system biology. J R Soc Interface 6:257–270CrossRefPubMedGoogle Scholar
  33. Meng F, Zhong Z, Feijen J (2009) Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 10(2):197–209 10.1021/bm801127d Google Scholar
  34. Noireaux V, Libchaber A (2004) A vesicle bioreactor as a step toward an artificial cell assembly. PNAS 101(51):17669–17674CrossRefPubMedGoogle Scholar
  35. Pasparakis G, Alexander C (2008) Sweet talking double hydrophilic block copolymer vesicles. Angew Chem Int Ed Engl 47(26):4847–4850CrossRefPubMedGoogle Scholar
  36. Pasparakis G, Krasnogor N, Cronin L, Davis B, Alexander C (2009a) Controlled polymer synthesis—from biomimicry towards synthetic biology. Chem Soc Rev (in press). doi:10.1039/B809333B
  37. Pasparakis G, Vamvakaki M, Krasnogor N, Alexander C (2009b) Diol-boronic acid complexes integrated by responsive polymers—a route to chemical sensing and logic operations. Soft Matter (in press). doi:10.1039/b911341
  38. Pérez-Jiménez MJ, Romero-Campero FJ (2006) P systems, a new computational modelling tool for systems biology. Trans Comput Syst Biol VI:176–197Google Scholar
  39. Pischel U (2007) Chemical approaches to molecular logic elements for addition and subtraction. Angew Chem Int Ed 46(22):4026–4040CrossRefGoogle Scholar
  40. Priami C (2009) Algorithmic systems biology. Commun ACM 52(5):80–88CrossRefGoogle Scholar
  41. Pǎun G (2002) Membrane computing: an introduction. Springer, New YorkGoogle Scholar
  42. Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF (eds) (2008) Protocells: bridging nonliving and living matter. MIT Press, CambridgeGoogle Scholar
  43. Romero-Campero FJ, Cao H, Camara M, Krasnogor N (2008) Structure and parameter estimation for cell systems biology models. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2008), ACM Publisher, pp 331–338Google Scholar
  44. Romero-Campero FJ, Twycross J, Camara M, Bennett M, Gheorghe M, Krasnogor N (2009) Modular assembly of cell systems biology models using p systems. Int J Found Comput Sci 20(3):427–442CrossRefGoogle Scholar
  45. Roodbeen R, van Hest JCM (2009) Synthetic cells and organelles: compartmentalization strategies. BioEssays 31(12):1299–1308 doi:10.1002/bies.200900106 CrossRefPubMedGoogle Scholar
  46. Serrano L (2007) Synthetic biology: promises and challenges. Mol Syst Biol 3Google Scholar
  47. Shetty R, Endy D, Knight T (2008) Engineering biobrick vectors from biobrick parts. J Biol Eng 2(1):5CrossRefPubMedGoogle Scholar
  48. Shillcock J, Lipowsky R (2005) Tension-induced fusion of bilayer membranes and vesicles. Nat Mater 4:225–228CrossRefPubMedGoogle Scholar
  49. Smaldon J, Blakes J, Krasnogor N, Lancet D (2008) A multi-scaled approach to artificial life simulation with p systems and dissipative particle dynamics. In: GECCO ’08: proceedings of the 10th annual conference on Genetic and evolutionary computation, ACM, New York, NY, USA, pp 249–256. doi:10.1145/1389095.1389134
  50. Sundararaman A, Stephan T, Grubbs RB (2008) Reversible restructuring of aqueous block copolymer assemblies through stimulus-induced changes in amphiphilicity. J Am Chem Soc 130(37):12264–12265CrossRefPubMedGoogle Scholar
  51. Tan C, Song H, Niemi J, You L (2007) A synthetic biology challenge: making cells compute. Mol Biosyst 3:343–353CrossRefPubMedGoogle Scholar
  52. Tan YC, Hettiarachchi K, Siu M, Pan YR, Lee AP (2006) Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles. J Am Chem Soc 128(17):5656–5658CrossRefPubMedGoogle Scholar
  53. van Dongen SFM, Nallani M, Cornelissen JJLM, Nolte RJM, van Hest JCM (2009) A three-enzyme cascade reaction through positional assembly of enzymes in a polymersome nanoreactor. Chem Eur J 15(5):1107–1114. 10.1002/chem.200802114 Google Scholar
  54. Weiss R, Basu S (2002) The device physics of cellular logic gates. In: The first workshop on non silicon computingGoogle Scholar
  55. Yoshida W, Yokobayashi Y (2007) Photonic boolean logic gates based on dna aptamers. Chem Commun 2(2):195–197CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • James Smaldon
    • 1
  • Francisco J. Romero-Campero
    • 1
  • Francisco Fernández Trillo
    • 3
  • Marian Gheorghe
    • 2
  • Cameron Alexander
    • 3
  • Natalio Krasnogor
    • 1
  1. 1.School of Computer ScienceUniversity of NottinghamNottinghamUK
  2. 2.Department of Computer ScienceUniversity of SheffieldRegent Court, 211 PortobelloSheffieldUK
  3. 3.School of PharmacyUniversity of NottinghamNottinghamUK

Personalised recommendations