Advertisement

The Skull Integration Pattern and Internal Constraints in Myotis myotisMyotis blythii Species Group (Vespertilionidae, Chiroptera) Might be Shaped by Natural Selection During Evolution Along the Genetic Line of Least Resistance

  • Igor DzeverinEmail author
Research Article

Abstract

Evolutionary dynamics of covariation patterns in craniometric traits was studied for bats from the Myotis myotisMyotis blythii species group (Mammalia, Chiroptera, Vespertilionidae) namely M.m.myotis, M.b.oxygnathus, M.b.omari, M.b.blythii, and M.b.altaicus. These species evolved towards increasing the size. One more species, M.dasycneme, which is phylogenetically, morphologically, and ecologically rather distant from these OTUs, also was studied for comparison with them. A set of 30 craniometric traits was studied for each of the OTUs using the quantitative genetics approaches. Phenotypic covariance matrices were used as proxies for additive genetic covariance matrices. The analysis has shown that multivariate divergence of the studied Myotis OTUs was governed by selection rather than by random drift and that these OTUs evolved in the direction close to the line of least evolutionary resistance. As overall size increases, the skull integration, respondability, and evolvability increase, while flexibility slightly decreases. Such a pattern can possibly be explained as a consequence of adaptation of M.blythii and especially M.myotis to prey on considerably large hard-shelled insects. A high cohesion of skull structures is needed for the effective functioning of their jaw apparatus. For Myotis bats with other foraging strategies (such as M. dasycneme that catches insects mainly using the claws of hind feet) this cohesion seems to be of lesser importance.

Keywords

Myotis Craniometric traits Phenotypic and genetic covariance Lines of least evolutionary resistance Natural selection Developmental constraints 

Notes

Acknowledgements

While having studied bat evolution, I always had opportunity to discuss the problems, results, and new data with Eugenia I. Kozhurina (1956–2016) and Peter P. Strelkov (1931–2012). They helped me a lot with advice, criticisms and friendly support when I was starting the research, the results of which are presented in this paper. I am grateful to Maria Ghazali for discussion, criticisms, and helpful recommendations. Thanks also are due to Daniela M. Rossoni for valuable comments. I thank the reviewers for helpful comments, suggestions and criticisms. I thank the following curators and collection staff who provided access to Myotis specimens: I. K. Rakhmatulina (Azerbaijan National Academy of Sciences Institute of Zoology, Baku, Azerbaijan); L. S. Shevchenko (Zoological Museum of National Museum of Natural History of the National Academy of Sciences of Ukraine, Kiev, Ukraine); N. M. Paskhina (Department of Vertebrate Zoology of Lomonosov Moscow State University, Moscow, Russia); G. I. Baranova, P. P. Strelkov (Zoological Institute of the Russian Academy of Science, St. Petersburg, Russia); L. M. Pisareva, Zh. V. Rozora (Zoological Museum of Taras Shevchenko National University of Kiev, Kiev, Ukraine); O. L. Rossolimo, I. Ya. Pavlinov, E. L. Yakhontov (Zoological Museum of Lomonosov Moscow State University, Moscow, Russia).

Compliance with Ethical Standards

Conflict of interest

The author declares that he have no conflict of interest.

References

  1. Abelentsev, V. I., Popov B. M. (1956) Order Chiroptera, or bats. In V. I. Abelentsev, I. G. Pidoplichko, B. M. Popov (Eds.), Fauna of Ukraine. Vol. 1. Mammals. Issue 1. General description of mammals. Insectivora, Chiroptera (pp. 229–446). Kyiv: Vydavnytstvo AN URSR (In Ukrainian)Google Scholar
  2. Ackermann, R. R., & Cheverud, J. M. (2000). Phenotypic covariance structure in tamarins (genus Saguinus): A comparison of variation patterns using matrix correlation and common principal component analysis. American Journal of Physical Anthropology, 111, 489–501.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ackermann, R. R., & Cheverud, J. M. (2002). Discerning evolutionary processes in patterns of tamarin (genus Saguinus) craniofacial variation. American Journal of Physical Anthropology, 117, 260–271.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aihartza, J., Almenar, D., Salsamendi, E., Goiti, U., & Garin, I. (2008). Fishing behaviour in the long-fingered bat Myotis capaccinii (Bonaparte, 1837): An experimental approach. Acta Chiropterologica, 10, 287–301.  https://doi.org/10.3161/150811008X414863.CrossRefGoogle Scholar
  5. Aizpurua, O., & Alberdi, A. (2018). Ecology and evolutionary biology of fishing bats. Mammal Review, 48, 284–297.  https://doi.org/10.1111/mam.12136.CrossRefGoogle Scholar
  6. Arbour, J. H., Curtis, A. A., & Santana, S. E. (2019). Signatures of echolocation and dietary ecology in the adaptive evolution of skull shape in bats. Nature Communications, 10, 2036.  https://doi.org/10.1038/s41467-019-09951-y.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Arlettaz, R. (1996). Feeding behaviour and foraging strategy of free-living mouse-eared bat, Myotis myotis and Myotis blythii. Animal Behaviour, 51, 1–11.CrossRefGoogle Scholar
  8. Arlettaz, R., Christe, P., & Schaub, M. (2017). Food availability as a major driver in the evolution of life-history strategies of sibling species. Ecology and Evolution, 7, 4163–4172.  https://doi.org/10.1002/ece3.2909.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Arlettaz, R., Perrin, N., & Hausser, J. (1997a). Trophic resource partitioning and competition between the two sibling bat species Myotis myotis and Myotis blythii. Journal of Animal Ecology, 66, 897–911.CrossRefGoogle Scholar
  10. Arlettaz, R., Ruedi, M., Ibañez, C., Palmeirim, J., & Hausser, J. (1997b). A new perspective on the zoogeography of the sibling mouse-eared bat species Myotis myotis and Myotis blythii: Morphological, genetical and ecological evidence. Journal of Zoology, London, 242, 45–62.CrossRefGoogle Scholar
  11. Arlettaz, R., Ruedi, M., & Hausser, J. (1993). Ecologie trophique de deux espèces jumelles et sympatriques de chauve-souris: Myotis myotis et Myotis blythii (Chiroptera: Vespertilionidae) Premiers résultats. Mammalia, 57, 519–531.CrossRefGoogle Scholar
  12. Arnold, S. J., Bürger, R., Hohenlohe, P. A., Ajie, B. C., & Jones, A. G. (2008). Understanding the evolution and stability of the G-matrix. Evolution, 62, 2451–2461.  https://doi.org/10.1111/j.1558-5646.2008.00472.x.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Arnold, S. J., Pfrender, M. E., & Jones, A. G. (2001). The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica, 112–113, 9–32.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Assis, A. P. A., Rossoni, D. M., Patton, J. L., & Marroig, G. (2017). Evolutionary processes and its environmental correlates in the cranial morphology of western chipmunks (Tamias). Evolution, 71, 595–609.  https://doi.org/10.1111/evo.13137.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bader, R. S., & Hall, J. S. (1960). Osteometric variation and function in bats. Evolution, 14, 8–17.CrossRefGoogle Scholar
  16. Barclay, R. M. R., & Brigham, R. M. (1991). Prey detection, dietary niche breadth, and body size in bats: Why are aerial insectivorous bats so small? The American Naturalist, 137, 693–703.CrossRefGoogle Scholar
  17. Benda, P., & Horáček, I. (1994–1995). Biometrics of Myotis myotis and Myotis blythi. Myotis, 32–33, 45–55.Google Scholar
  18. Benda, P., Andreas, M., Kock, D., Lučan, R. K., Munclinger, P., Nová, P., et al. (2006). Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 4. Bat fauna of Syria: Distribution, systematics, ecology. Acta Societatis Zoologicae Bohemicae, 70, 1–329.Google Scholar
  19. Benda, P., Hanák, V., & Červeny, J. (2011). Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 9. Bats from Transcaucasia and West Turkestan in collection of the National Museum, Prague. Acta Societatis Zoologicae Bohemicae, 75, 159–222.Google Scholar
  20. Berthier, P., Excoffier, L., & Ruedi, M. (2006). Recurrent replacement of mt DNA and cryptic hybridization between two sibling bat species Myotis myotis and Myotis blythii. Proceedings of the Royal Society: Series B, 273, 3101–3109.CrossRefGoogle Scholar
  21. Blood, B. R., & Clark, M. K. (1998). Myotis vivesi. Mammalian Species, 588, 1–5.Google Scholar
  22. Bogdanowicz, W., Van Den Bussche, R. A., Gajewska, M., Postawa, T., & Harutyunyan, M. (2009). Ancient and contemporary DNA sheds light on the history of mouse-eared bats in Europe and the Caucasus. Acta Chiropterologica, 11, 289–305.  https://doi.org/10.3161/150811009X485530.CrossRefGoogle Scholar
  23. Britton, A. R. C., Jones, G., Rayner, J. M. V., Boonman, A. M., & Verboom, B. (1997). Flight performance, echolocation and foraging behaviour in pond bats, Myotis dasycneme (Chiroptera: Vespertilionidae). Journal of Zoology, London, 241, 503–522.CrossRefGoogle Scholar
  24. Campbell, K. M., & Santana, S. E. (2017). Do differences in skull morphology and bite performance explain dietary specialization in sea otters? Journal of Mammalogy, 98, 1408–1416.  https://doi.org/10.1093/jmammal/gyx091.CrossRefGoogle Scholar
  25. Castella, V., Ruedi, M., Excoffier, L., Ibáñez, C., Arlettaz, R., & Hausser, J. (2000). Is the Gibraltar Strait a barrier to gene flow for the bat Myotis myotis (Chiroptera: Vespertilionidae)? Molecular Ecology, 9, 1761–1772.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Charlesworth, B., Lande, R., & Slatkin, M. (1982). A neo-Darwinian commentary on macroevolution. Evolution, 36, 474–498.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Cheverud, J. M. (1984). Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology, 110, 155–171.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Cheverud, J. M. (1988). A comparison of genetic and phenotypic correlations. Evolution, 42, 958–968.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cheverud, J. M. (1996). Quantitative genetic analysis of cranial morphology in the cotton-top (Saguinus oedipus) and saddle-back (S. fuscicollis) tamarins. Journal of Evolutionary Biology, 9, 5–42.CrossRefGoogle Scholar
  30. Cheverud, J. M., & Marroig, G. (2007). Comparing covariance matrices: Random skewers method compared to the common principal components model. Genetics and Molecular Biology, 30, 461–469.CrossRefGoogle Scholar
  31. Datzmann, T., von Helversen, O., & Mayer, F. (2010). Evolution of nectarivory in phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia). BMC Evolutionary Biology, 10, 165.  https://doi.org/10.1186/1471-2148-10-165.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Dietz, C., von Helversen, O., & Nill, D. (2009). Bats of Britain, Europe & Northwest Africa. London: A & C Black Publishers Ltd.Google Scholar
  33. Drake, A. G., & Klingenberg, C. P. (2010). Large-scale diversification of skull shape in domestic dogs: Disparity and modularity. The American Naturalist, 175, 289–301.  https://doi.org/10.1086/650372.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dumont, E. R., Samadevam, K., Grosse, I., Warsi, O. M., Baird, B., & Davalos, L. M. (2014). Selection for mechanical advantage underlies multiple cranial optima in New World leaf-nosed bats. Evolution, 68, 1436–1449.  https://doi.org/10.1111/evo.12358.CrossRefPubMedGoogle Scholar
  35. Dzeverin, I. I. (1995). Craniometric variation in lesser mouse-eared bat, Myotis blythi (Chiroptera, Vespertilionidae). Zoologichesky Zhurnal, 74(7), 82–95. (In Russian with English summary).Google Scholar
  36. Dzeverin, I. I. (1998). A unidimensional model of phenetic diversity of the Palearctic Myotis species. Biology Bulletin, 25, 206–212.Google Scholar
  37. Dzeverin, I. I. (1999). Craniometric variation in pond bats from central and eastern parts of its geographic area. Bulleten Moskovskogo Obshchestva Ispytatelej Prirody. Otdel biologicheskij, 104(1), 24–29. (In Russian with English summary).Google Scholar
  38. Dzeverin, I. (2008). The stasis and possible patterns of selection in evolution of a group of related species from the bat genus Myotis (Chiroptera, Vespertilionidae). Journal of Mammalian Evolution, 15, 123–142.CrossRefGoogle Scholar
  39. Dzeverin, I., & Ghazali, M. (2010). Evolutionary mechanisms affecting the multivariate divergence in some Myotis species (Chiroptera, Vespertilionidae). Evolutionary Biology, 37, 100–112.CrossRefGoogle Scholar
  40. Dzeverin, I., & Ghazali, M. (2012). Biometrics and taxonomic status of Myotis blythii (Chiroptera, Vespertilionidae) from Crimea: Cranial size and shape. Vestnik zoologii, 46, 59–67. (In Russian with English summary).Google Scholar
  41. Dzeverin, I. I., & Strelkov, P. P. (2008). Taxonomic status of Myotis blythii (Chiroptera, Vespertilionidae) from the Altai. Zoologichesky Zhurnal, 87, 973–982. (In Russian with English summary).Google Scholar
  42. Estók, P., & Siemers, B. M. (2009). Calls of a bird-eater: The echolocation behaviour of the enigmatic greater noctule, Nyctalus lasiopterus. Acta Chiropterologica, 11, 405–414.  https://doi.org/10.3161/150811009X485620.CrossRefGoogle Scholar
  43. Evin, A., Baylac, M., Ruedi, M., Mucedda, M., & Pons, J.-M. (2008). Taxonomy, skull diversity and evolution in a species complex of Myotis (Chiroptera: Vespertilionidae): a geometric morphometric appraisal. Biological Journal of the Linnean Society, 95, 529–538.  https://doi.org/10.1111/j.1095-8312.2008.01076.x.CrossRefGoogle Scholar
  44. Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Harlow (Essex): Longman Group Limited.Google Scholar
  45. Fenton, M. B., & Bogdanowicz, W. (2002). Relationships between external morphology and foraging behaviour: Bats in the genus Myotis. Canadian Journal of Zoology, 80, 1004–1013.CrossRefGoogle Scholar
  46. Findley, J. S. (1972). Phenetic relationships among bats of the genus Myotis. Systematic Zoology, 21, 31–52.CrossRefGoogle Scholar
  47. Furman, A., Çelik, Y. E., & Çoraman, E. (2018). Myotis myotis (Chiroptera: Vespertilionidae) diverges into two distinct, Anatolian and European, populations. Zoological Journal of the Linnean Society, 183, 226–235.CrossRefGoogle Scholar
  48. Furman, A., Çoraman, E., Nagy, Z. L., Postawa, T., Bilgin, R., Gajewska, M., et al. (2013). Phylogeography of the large Myotis bats (Chiroptera: Vespertilionidae) in Europe, Asia Minor, and Transcaucasia. Biological Journal of the Linnean Society, 108, 189–209.CrossRefGoogle Scholar
  49. Furman, A., Çoraman, E., Çelik, Y. E., Postawa, T., Bachanek, J., & Ruedi, M. (2014). Cytonuclear discordance and the species status of Myotis myotis and Myotis blythii (Chiroptera). Zoologica Scripta, 43, 549–561.CrossRefGoogle Scholar
  50. Ghazali, M. A. (2004). Functional interpretation of differences in the structure of masticatory apparatus of the mouse-eared bat species, Myotis myotis and Myotis blythii. Zestnik zoologii, 38(2), 39–44. (In Ukrainian with English summary).Google Scholar
  51. Ghazali, M. A. & Dzeverin, I. I. (2004). Biometrics of reduced elements of the dental system in some mouse-eared bats, Myotis (Vespertilionidae). Plecotus et al., 7, 7–17. (In Russian with English summary).Google Scholar
  52. Ghazali, M., & Dzeverin, I. (2012). Biometrics and taxonomic status of Myotis blythii (Chiroptera, Vespertilionidae) from Crimea: Odontometric characters. Vestnik zoologii, 46, 259–267. (In Russian with English summary).Google Scholar
  53. Ghazali, M., & Dzeverin, I. (2013). Correlations between hardness of food and craniodental traits in nine Myotis species (Chiroptera, Vespertilionidae). Vestnik zoologii, 47, 73–82 (print version).  https://doi.org/10.2478/vzoo-2013-0006 (e-67–e-76 (online version)).CrossRefGoogle Scholar
  54. Ghazali, M., Moratelli, R., & Dzeverin, I. (2017). Ecomorph evolution in Myotis (Vespertilionidae, Chiroptera). Journal of Mammalian Evolution, 24, 475–484.  https://doi.org/10.1007/s10914-016-9351-z.CrossRefGoogle Scholar
  55. Giannini, N. P., & Kalko, E. K. V. (2005). The guild structure of animalivorous leaf-nosed bats of Barro Colorado Island, Panama, revisited. Acta Chiropterologica, 7, 131–146.CrossRefGoogle Scholar
  56. Giannini, N. P., Gunnell, G. F., Habersetzer, J., & Simmons, N. B. (2012). Early evolution of body size in bats. In G. F. Gunnell & N. B. Simmons (Eds.), Evolutionary History of Bats: Fossils, Molecules and Morphology (pp. 530–555). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  57. Godawa Stormark, J. (1998). Phenetic analysis of Old World Myotis (Chiroptera: Vespertilionidae) based on dental characters. Acta Theriologica, 43, 1–11.CrossRefGoogle Scholar
  58. Godlevskaya, E. V., Ghazali, M. A., & Postawa, T. (2009). A current state of cave dwelling bat species (Mammalia, Chiroptera) of the Crimea. Vestnik zoologii, 43, 253–265.Google Scholar
  59. Grabowski, M. (2016). Bigger brains led to bigger bodies? The correlated evolution of human brain and body size. Current Anthropology, 57, 174–196.  https://doi.org/10.1086/685655.CrossRefGoogle Scholar
  60. Grabowski, M., & Porto, A. (2017). How many more? Sample size determination in studies of morphological integration and evolvability. Methods in Ecology and Evolution, 8, 592–603.  https://doi.org/10.1111/2041-210X.12674.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Gunz, P., Neubauer, S., Maureille, B., & Hublin, J.-J. (2010). Brain development after birth differs between Neanderthals and modern humans. Current Biology, 20, R921–R922.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Haber, A. (2011). A comparative analysis of integration indices. Evolutionary Biology, 38, 476–488.  https://doi.org/10.1007/s11692-011-9137-4.CrossRefGoogle Scholar
  63. Hallgrímsson, B., Jamniczky, H. A., Young, N. M., Rolian, C., Schmidt-Ott, U., & Marcucio, R. S. (2012). The generation of variation and the developmental basis for evolutionary novelty. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution, 318, 501–517.  https://doi.org/10.1002/jez.b.22448.CrossRefGoogle Scholar
  64. Hallgrímsson, B., Willmore, K., & Hall, B. K. (2002). Canalization, developmental stability, and morphological integration in primate limbs. Yearbook of Physical Anthropology, 45, 131–158.  https://doi.org/10.1002/ajpa.10182.CrossRefGoogle Scholar
  65. Hansen, T. F., & Houle, D. (2008). Measuring and comparing evolvability and constraint in multivariate characters. Journal of Evolutionary Biology, 21, 1201–1219.  https://doi.org/10.1111/j.1420-9101.2008.01573.x.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Hedrick, B. P., & Dumont, E. R. (2018). Putting the leaf-nosed bats in context: A geometric morphometric analysis of three of the largest families of bats. Journal of Mammalogy, 1, 1.  https://doi.org/10.1093/jmammal/gyy101.CrossRefGoogle Scholar
  67. Hedrick, B. P., Mutumi, G. L., Munteanu, V. D., Sadier, A., Davies, K. T. J., Rossiter, S. J., et al. (2019). Morphological diversification under high integration in a hyper diverse mammal clade. Journal of Mammalian Evolution.  https://doi.org/10.1007/s10914-019-09472-x.CrossRefGoogle Scholar
  68. Hood, C. S., & Pitocchelli, J. (1983). Noctilio albiventris. Mammalian Species, 197, 1–5.Google Scholar
  69. Horáček, I. (1985). Population ecology of Myotis myotis in central Bohemia. Acta Universitatis Carolinae – Biologica 1981, 8, 161–267.Google Scholar
  70. Horáček, I., Hanák, V., & Gaisler, J. (2000). Bats of the Palearctic region: a taxonomic and biogeographic review. In B. W. Wołoszyn (Ed.). Proceedings of the VIIIth EBRS, Approaches to biogeography and ecology of bats (Vol. 1, pp. 11–157). Kraków: Chiropterological Information Center.Google Scholar
  71. Hunt, G., & Carrano, M. T. (2010). Models and methods for analyzing phenotypic evolution in lineages and clades. In J. Alroy & G. Hunt (Eds.), Quantitative Methods in Paleobiology (pp. 245–269). New Haven: The Paleontological Society.Google Scholar
  72. Jamniczky, H. A., & Hallgrímsson, B. (2009). A comparison of covariance structure in wild and laboratory muroid crania. Evolution, 63, 1540–1556.  https://doi.org/10.1111/j.1558-5646.2009.00651.x.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Jones, A. G., Arnold, S. J., & Bürger, R. (2007). The mutation matrix and the evolution of evolvability. Evolution, 61, 727–745.  https://doi.org/10.1111/j.1558-5646.2007.00071.x.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Jones, G. (1999). Scaling of echolocation call parameters in bats. The Journal of Experimental Biology, 202, 3359–3367.PubMedPubMedCentralGoogle Scholar
  75. Kingsolver, J. G., & Pfennig, D. W. (2004). Individual-level selection as a cause of Cope's rule of phyletic size increase. Evolution, 58, 1608–1612.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kozhurina, E. I. (2009). Conspectus of the Russian bat fauna: systematics and distribution. Plecotus et al., 11–12, 71–105.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kozhurina, E. I., Lashkova, O. I., & Mezhzherin, S. V. (2013). Order Chiroptera, or bats – Chiroptera Blumenbach, 1779. In S. V. Mezhzherin & O. I. Lashkova (Eds.), Mammals of Ukraine (a reference book with identification keys) (pp. 43–124). Kyiv: Naukova dumka. (In Ukrainian).Google Scholar
  78. Kruskop, S. V., Borisenko, A. V., Ivanova, N. V., Lim, B. K., & Eger, J. L. (2012). Genetic diversity of northeastern Palearctic bats as revealed by DNA barcodes. Acta Chiropterologica, 14, 1–14.CrossRefGoogle Scholar
  79. Kuzyakin, A. P. (1950). The bats: Systematics, way of life, and the utility for agriculture and forestry. Moscow: Sovetskaya nauka. (In Russian).Google Scholar
  80. Laland, K., Uller, T., Feldman, M., Sterelny, K., Müller, G. B., Moczek, A., et al. (2014). Does evolutionary theory need a rethink? Yes, urgently. Nature, 514, 161–162, 164.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Müller, G. B., Moczek, A., et al. (2015). The extended evolutionary synthesis: Its structure, assumptions and predictions. Proceedings of the Royal Society: Series B, 282, 20151019.  https://doi.org/10.1098/rspb.2015.1019.CrossRefGoogle Scholar
  82. Lande, R. (1976). Natural selection and random genetic drift in phenotypic evolution. Evolution, 30, 314–334.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain: Body size allometry. Evolution, 33, 402–416.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Lande, R. (1980). The genetic covariance between characters maintained by pleiotropic mutations. Genetics, 94, 203–215.PubMedPubMedCentralGoogle Scholar
  85. Lande, R. (1985). Genetic and evolutionary aspects of allometry. In W. L. Jungers (Ed.), Size and scaling in primate biology (pp. 21–32). New York: Plenum Publishing Corporation.CrossRefGoogle Scholar
  86. Lande, R., & Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolution, 37, 1210–1226.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lemen, C. A., & Freeman, P. W. (1984). The genus: A macroevolutionary problem. Evolution, 38, 1219–1237.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Linde-Medina, M., & Diogo, R. (2014). Do correlation patterns reflect the role of development in morphological evolution. Evolutionary Biology, 41, 494–502.  https://doi.org/10.1007/s11692-014-9275-6.CrossRefGoogle Scholar
  89. Ma, J., Jones, G., Zhang, S., Shen, J., Metzner, W., Zhang, L., et al. (2003). Dietary analysis confirms that Rickett's big-footed bat (Myotis ricketti) is a piscivore. Journal of Zoology, London, 261, 245–248.  https://doi.org/10.1017/S095283690300414X.CrossRefGoogle Scholar
  90. Machado, F. A., Hubbe, A., Melo, D., Porto, A., & Marroig, G. (2019). Measuring the magnitude of morphological integration: The effect of differences in morphometric representations and the inclusion of size. Evolution.  https://doi.org/10.1111/evo.13864.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Machado, F. A., Zahn, T. M. G., & Marroig, G. (2018). Evolution of morphological integration in the skull of Carnivora (Mammalia): Changes in Canidae lead to increased evolutionary potential of facial traits. Evolution, 72, 1399–1419.  https://doi.org/10.1111/evo.13495.CrossRefGoogle Scholar
  92. Marroig, G., & Cheverud, J. M. (2001). A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology and ontogeny during cranial evolution of New World monkeys. Evolution, 55, 2576–2600.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Marroig, G., & Cheverud, J. M. (2004). Did natural selection or genetic drift produce the cranial diversification of neotropical monkeys? The American Naturalist, 163, 417–428.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Marroig, G., & Cheverud, J. M. (2005). Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in New World monkeys. Evolution, 59, 1128–1142.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Marroig, G., Shirai, L. T., Porto, A., de Oliveira, F. B., & De Conto, V. (2009). The evolution of modularity in the mammalian skull II: Evolutionary consequences. Evolutionary Biology, 36, 136–148.CrossRefGoogle Scholar
  96. Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., et al. (1985). Developmental constraints and evolution. The Quarterly Review of Biology, 60, 265–287.CrossRefGoogle Scholar
  97. Mayr, E. (1963). Animal species and evolution. Cambridge: The Belknap Press of Harvard University Press.CrossRefGoogle Scholar
  98. McGuigan, K., Chenoweth, S. F., & Blows, M. W. (2005). Phenotypic divergence along lines of genetic variance. The American Naturalist, 165, 32–43.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Melo, D., Garcia, G., Hubbe, A., Assis, A. P., & Marroig, G. (2016). EvolQG – An R package for evolutionary quantitative genetics [version 3; peer review: 2 approved, 1 approved with reservations]. F1000Research, 4, 925. https://doi.org/10.12688/f1000research.7082.3 PubMedCentralCrossRefGoogle Scholar
  100. Melo, D., & Marroig, G. (2015). Directional selection can drive the evolution of modularity in complex traits. Proceedings of the National Academy of Sciences of the USA, 112, 470–475.  https://doi.org/10.1073/pnas.1322632112.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Monteiro, L. R., & Nogueira, M. R. (2010). Adaptive radiations, ecological specialization, and the evolutionary integration of complex morphological structures. Evolution, 64, 724–744.  https://doi.org/10.1111/j.1558-5646.2009.00857.x.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Monteiro, L. R., & Nogueira, M. R. (2011). Evolutionary patterns and processes in the radiation of phyllostomid bats. BMC Evolutionary Biology, 11, 137.  https://doi.org/10.1186/1471-2148-11-137.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Morales, A. E., Ruedi, M., Field, K., & Carstens, B. C. (2019). Diversification rates have no effect on the convergent evolution of foraging strategies in the most speciose genus of bats, Myotis. Evolution.  https://doi.org/10.1111/evo.13849.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Mousseau, T. A., & Roff, D. A. (1987). Natural selection and the heritability of fitness components. Heredity, 59, 181–197.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Novaes, R. L. M., Souza, R. F., & Moratelli, R. (2017). Myotis riparius (Chiroptera: Vespertilionidae). Mammalian Species, 49, 51–56.  https://doi.org/10.1093/mspecies/sex011.CrossRefGoogle Scholar
  106. Ospina-Garcés, S. M., De Luna, E., Herrera, M. L. G., & Flores-Martínez, J. J. (2016). Cranial shape and diet variation in Myotis species (Chiroptera: Vespertilionidae): Testing the relationship between form and function. Acta Chiropterologica, 18, 163–180.  https://doi.org/10.3161/15081109ACC2016.18.1.007.CrossRefGoogle Scholar
  107. Ospina-Garcés, S. M., De Luna, E., Herrera, M. L. G., Arroyo-Cabrales, J., & Flores-Martínez, J. J. (2018). Bite force, cranial morphometrics and size in the fishing bat Myotis vivesi (Chiroptera: Vespertilionidae). Revista de Biología Tropical, 66, 1614–1628.Google Scholar
  108. Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290.  https://doi.org/10.1093/bioinformatics/btg412.CrossRefPubMedPubMedCentralGoogle Scholar
  109. Pavlicev, M., Cheverud, J. M., & Wagner, G. P. (2011). Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proceedings of the Royal Society: Series B, 278, 1903–1912.  https://doi.org/10.1098/rspb.2010.2113.CrossRefGoogle Scholar
  110. Petri, B., Pääbo, S., von Haeseler, A., & Tautz, D. (1997). Paternity assessment and population subdivision in a natural population of the larger mouse-eared bat Myotis myotis. Molecular Ecology, 6, 235–242.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Phillips, P. C., & Arnold, S. J. (1989). Visualizing multivariate selection. Evolution, 43, 1209–1222.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Pielou, E. C. (1984). Probing multivariate data with random skewers: A preliminary to direct gradient analysis. Oikos, 42, 161–165.CrossRefGoogle Scholar
  113. Platt, R. N., Faircloth, B. C., Sullivan, K. A. M., Kieran, T. J., Glenn, T. C., Vandewege, M. W., et al. (2018). Conflicting evolutionary histories of the mitochondrial and nuclear genomes in New World Myotis bats. Systematic Biology, 67, 236–249.  https://doi.org/10.1093/sysbio/syx070.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Polly, P. D. (2005). Development and phenotypic correlations: The evolution of tooth shape in Sorex araneus. Evolution & Development, 7, 29–41.CrossRefGoogle Scholar
  115. Polly, P. D., & Mock, O. B. (2018). Heritability: The link between development and the microevolution of molar tooth form. Historical Biology, 30, 53–63.  https://doi.org/10.1080/08912963.2017.1337760.CrossRefGoogle Scholar
  116. Porto, A., de Oliveira, F. B., Shirai, L. T., De Conto, V., & Marroig, G. (2009). The evolution of modularity in the mammalian skull I: Morphological integration patterns and magnitudes. Evolutionary Biology, 36, 118–135.CrossRefGoogle Scholar
  117. Porto, A., Sebastião, H., Pavan, S. E., Vendeberg, J. L., Marroig, G., & Cheverud, J. M. (2015). Rate of evolutionary change in cranial morphology of the marsupial genus Monodelphis is constrained by the availability of additive genetic variation. Journal of Evolutionary Biology, 28, 973–985.  https://doi.org/10.1111/jeb.12628.CrossRefPubMedPubMedCentralGoogle Scholar
  118. Porto, A., Shirai, L. T., de Oliveira, F. B., & Marroig, G. (2013a). Size variation, growth strategies and the evolution of modularity in the mammalian skull. Dryad.  https://doi.org/10.5061/dryad.4d236.CrossRefGoogle Scholar
  119. Porto, A., Shirai, L. T., de Oliveira, F. B., & Marroig, G. (2013b). Size variation, growth strategies, and the evolution of modularity in the mammalian skull. Evolution, 67, 3305–3322.  https://doi.org/10.1111/evo.12177.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Prôa, M., O'Higgins, P., & Monteiro, L. R. (2012). Type I error rates for testing genetic drift with phenotypic covariance matrices: A simulation study. Evolution, 67, 185–195.  https://doi.org/10.1111/j.1558-5646.2012.01746.x.CrossRefPubMedPubMedCentralGoogle Scholar
  121. R Core Team (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  122. Renaud, S., Auffray, J.-C., & Michaux, J. (2006). Conserved phenotypic variation patterns, evolution along lines of least resistance, and departure due to selection in fossil rodents. Evolution, 60, 1701–1717.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Renaud, S., & Michaux, J. R. (2007). Mandibles and molars of the wood mouse, Apodemus sylvaticus (L.): Integrated latitudinal pattern and mosaic insular evolution. Journal of Biogeography, 34, 339–355.  https://doi.org/10.1111/j.1365-2699.2006.01597.x.CrossRefGoogle Scholar
  124. Revell, L. J. (2009). Size-correction and principal components for interspecific comparative studies. Evolution, 63, 3258–3268.  https://doi.org/10.1111/j.1558-5646.2009.00804.x.CrossRefGoogle Scholar
  125. Revell, L. J. (2012). Phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223.  https://doi.org/10.1111/j.2041-210X.2011.00169.x.CrossRefGoogle Scholar
  126. Revell, L. J., Mahler, D. L., Sweeney, J. R., Sobotka, M., Fancher, V. E., & Losos, J. B. (2010). Nonlinear selection and the evolution of variances and covariances for continuous characters in an anole. Journal of Evolutionary Biology, 23, 407–421.  https://doi.org/10.1111/j.1420-9101.2009.01911.x.CrossRefPubMedPubMedCentralGoogle Scholar
  127. Roff, D. A. (1995). The estimation of genetic correlations from phenotypic correlations: A test of Cheverud's conjecture. Heredity, 74, 481–490.CrossRefGoogle Scholar
  128. Roff, D. (2000). The evolution of the G matrix: Selection or drift? Heredity, 84, 135–142.PubMedCrossRefPubMedCentralGoogle Scholar
  129. Roff, D. A., & Fairbairn, D. J. (2012). A test of the hypothesis that correlational selection generates genetic correlations. Evolution, 66, 2953–2960.  https://doi.org/10.1111/j.1558-5646.2012.01656.x.CrossRefPubMedPubMedCentralGoogle Scholar
  130. Rohlf, F. J. (2017). The method of random skewers //. Evolutionary Biology, 44, 542–550.  https://doi.org/10.1007/s11692-017-9425-8.CrossRefGoogle Scholar
  131. Romaniuk, A. (2018a). Functional and phylogenetic aspect in modularity of Palearctic mustelids (Carnivora, Mustelidae) mandible. Vestnik Zoologii, 52, 165–176.  https://doi.org/10.2478/vzoo-2018-0018.CrossRefGoogle Scholar
  132. Romaniuk, A. (2018b). Shape variation of Palearctic mustelids (Carnivora: Mustelidae) mandible is affected both by evolutionary history and ecological preference. Hystrix, the Italian Journal of Mammalogy, 29, 87–94.  https://doi.org/10.4404/hystrix-00051-2018.CrossRefGoogle Scholar
  133. Rossoni, D. M., Assis, A. P. A., Giannini, N. P., & Marroig, G. (2017). Intense natural selection preceded the invasion of new adaptive zones during the radiation of New World leaf-nosed bats. Scientific Repoorts, 7, 11076.  https://doi.org/10.1038/s41598-017-08989-6.CrossRefGoogle Scholar
  134. Rossoni, D. M., Costa, B. M. A., Giannini, N. P., & Marroig, G. (2019). A multiple peak adaptive landscape based on feeding strategies and roosting ecology shaped the evolution of cranial covariance structure and morphological differentiation in phyllostomid bats. Evolution, 1, 1.  https://doi.org/10.1111/evo.13715.CrossRefPubMedPubMedCentralGoogle Scholar
  135. Ruedi, M., & Mayer, F. (2001). Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Molecular Phylogenetics and Evolution, 21, 436–448.  https://doi.org/10.1006/mpev.2001.1017.CrossRefPubMedPubMedCentralGoogle Scholar
  136. Ruedi, M., Stadelmann, B., Gager, Y., Douzery, E. J. P., Francis, C. M., Lin, L.-K., et al. (2013). Molecular phylogenetic reconstructions identify East Asia as the cradle for the evolution of the cosmopolitan genus Myotis (Mammalia, Chiroptera). Molecular Phylogenetics and Evolution, 69, 437–449.  https://doi.org/10.1016/j.ympev.2013.08.011.CrossRefPubMedPubMedCentralGoogle Scholar
  137. Santana, S. E., & Lofgren, S. E. (2013). Does nasal echolocation inflence the modularity of the mammal skull? Journal of Evolutionary Biology, 26, 2520–2526.  https://doi.org/10.1111/jeb.12235.CrossRefPubMedPubMedCentralGoogle Scholar
  138. Schluter, D. (1996). Adaptive radiation along genetic lines of least resistance. Evolution, 50, 1766–1774.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Schmalhausen, I. I. (1982). The organism as a whole in its ontogeny and evolution: Selected works. Moscow: Nauka. (In Russian).Google Scholar
  140. Schmalhausen, I. I. (1983). Trends and regularities in evolution: Selected works. Moscow: Nauka. (In Russian).Google Scholar
  141. Schmidt-Nielsen, K. (1982). Animal physiology: adaptation and environment. Part 1. Translated from the (2nd ed.). Moscow: Mir. (In Russian).Google Scholar
  142. Segura-Trujillo, C. A., Willig, M. R., & Álvarez-Castañeda, S. T. (2018). Correspondence between ecomorphotype and use of arthropod resources by bats of the genus Myotis. Journal of Mammalogy, 99, 659–667.  https://doi.org/10.1093/jmammal/gyy049.CrossRefGoogle Scholar
  143. Shirai, L. T., & Marroig, G. (2010). Skull modularity in neotropical marsupials and monkeys: Size variation and evolutionary constraint and flexibility. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution, 314, 663–683.  https://doi.org/10.1002/jez.b.21367.CrossRefGoogle Scholar
  144. Simmons, N. B. (2005). Order Chiroptera. In D. E. Wilson & D. A. M. Reeder (Eds). Mammal species of the world: a taxonomic and geographic reference, 3rd edition, https://bucknell.edu/msw3/
  145. Simpson, G. G. (1944). Tempo and mode in evolution. New York: Columbia University Press.Google Scholar
  146. Stadelmann, B., Herrera, L. G., Arroyo-Cabrales, J., Flores-Martínez, J. J., May, B. P., & Ruedi, M. (2004). Molecular systematics of the fishing bat Myotis (Pizonyx) vivesi. Journal of Mammalogy, 85, 133–139.CrossRefGoogle Scholar
  147. Stadelmann, B., Jacobs, D. S., Schoeman, C., & Ruedi, M. (2004). Phylogeny of African Myotis bats (Chiroptera, Vespertilionidae) inferred from cytochrome b sequences. Acta Chiropterologica, 6, 177–192.CrossRefGoogle Scholar
  148. Stadelmann, B., Lin, L.-K., Kunz, T. H., & Ruedi, M. (2007). Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Molecular Phylogenetics and Evolution, 43, 32–48.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Strelkov, P. P. (1963). Order Chiroptera—bats. In I. M. Gromov, A. A. Gureev, G. A. Novikov, I. I. Sokolov, P. P. Strelkov, P. & K. K. Chapsky, Mammals of the USSR fauna. Part 1 (pp. 43–124). Moscow: Izdatelstvo AN SSSR. (In Russian).Google Scholar
  150. Strelkov, P. P. (1972). Myotis blythi (Tomes, 1857): Distribution, geographical variability and differences from Myotis myotis (Borkhausen, 1797). Acta Theriologica, 17, 355–380. (In Russian, with English summary).CrossRefGoogle Scholar
  151. Strelkov, P. P., Abramson, N. I., & Dzeverin, I. I. (2002). Geographic variation of craniometric characteristics in the noctule bat Nyctalus noctula (Chiroptera) related to its life history. Zoologichesky Zhurnal, 81, 850–863. (In Russian with English summary).Google Scholar
  152. Tate, G. H. H. (1941). A review of the genus Myotis (Chiroptera) of Eurasia, with special reference to species occuring in the East Indies. Bulletin of the American Museum of Natural History, 78, 537–565.Google Scholar
  153. Thabah, A., Li, G., Wang, Y., Liang, B., Hu, K., Zhang, S., et al. (2007). Diet, echolocation calls, and phylogenetic affinities of the great evening bat (Ia io; Vespertilionidae): Another carnivorous bat. Journal of Mammalogy, 88, 728–735.CrossRefGoogle Scholar
  154. Tsuboi, M., van der Bijl, W., Kopperud, B. T., Erritzøe, J., Voje, K. L., Kotrschal, A., et al. (2018). Breakdown of brain-body allometry and the encephalization of birds and mammals. Nature Ecology & Evolution, 2, 1492–1500.  https://doi.org/10.1038/s41559-018-0632-1.CrossRefGoogle Scholar
  155. Uller, T., Moczek, A. P., Watson, R. A., Brakefield, P. M., & Laland, K. N. (2018). Developmental bias and evolution: A regulatory network perspective. Genetics, 209, 949–966.  https://doi.org/10.1534/genetics.118.300995.CrossRefPubMedPubMedCentralGoogle Scholar
  156. Walsh, B., & Blows, M. W. (2009). Abundant genetic variation + strong selection = multivariate genetic constraints: A geometric view of adaptation. Annual Review of Ecology, Evolution, and Systematics, 40, 41–59.CrossRefGoogle Scholar
  157. Wetterer, A. L., Rockman, M. V., & Simmons, N. B. (2000). Phylogeny of phyllostomid bats (Mammalia: Chiroptera): Data from diverse morphological systems, sex chromosomes, and restriction sites. Bulletin of the American Museum of Natural History, 248, 1–200.CrossRefGoogle Scholar
  158. Willis, J. H., Coyne, J. A., & Kirkpatrick, M. (1991). Can one predict the evolution of quantitative characters without genetics? Evolution, 45, 441–444.PubMedCrossRefPubMedCentralGoogle Scholar
  159. Wray, G. A., Hoekstra, H. E., Futuyma, D. J., Lenski, R. E., Mackay, T. F. C., Schluter, D., et al. (2014). Does evolutionary theory need a rethink? No, all is well. Nature, 514, 161, 163–164.Google Scholar
  160. Yablokov, A. V. (1966). Variability of mammals. Moscow: Nauka. (In Russian).Google Scholar
  161. Young, N. M., & Hallgrímsson, B. (2005). Serial homology and the evolution of mammalian limb covariation structure. Evolution, 59, 2691–2704.PubMedCrossRefGoogle Scholar
  162. Young, N. M., Wagner, G. P., & Hallgrímsson, B. (2010). Development and the evolvability of human limbs. Proceedings of the National Academy of Sciences of the USA, 107, 3400–3405.  https://doi.org/10.1073/pnas.0911856107.CrossRefPubMedPubMedCentralGoogle Scholar
  163. Zavadsky, K. M. (1973). The development of evolutionary theory after Darwin (1859–1920s). Leningrad: Nauka. (In Russian).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Schmalhausen Institute of ZoologyKievUkraine

Personalised recommendations