Advertisement

Evolutionary Biology

, Volume 46, Issue 4, pp 332–342 | Cite as

Macroevolution of Toothed Whales Exceptional Relative Brain Size

  • Carmela Serio
  • Silvia CastiglioneEmail author
  • Gianmarco Tesone
  • Martina Piccolo
  • Marina Melchionna
  • Alessandro Mondanaro
  • Mirko Di Febbraro
  • Pasquale Raia
Research Article

Abstract

Toothed whales (Odontoceti, Cetacea) are well-known for their ability to produce complex vocalizations, to use tools, to possess self-recognition, and for their extreme behavioural plasticity. The toothed whale intelligence is said to compete with that of primates, so does their extremely large brain to body size ratio. Common explanations for the acquisition of such large brains over the evolutionary time (encephalization) in toothed whales range from their demanding, complex social lives, to their feeding habits, to echolocation. Yet, several studies found no macroevolutionary trend in Odontoceti encephalization, which casts doubts on its selective advantage. We applied a recently developed phylogenetic comparative method to study macroevolutionary trends in relative brain size (RBS) and brain size evolutionary rates in cetaceans, comparing toothed whales to the other cetaceans and contrasting groups of species as ascribed to different feeding categories. We found that cetaceans as a whole followed a trend for increased encephalization over time, starting from small-brained archaeocete ancestors. Toothed whales do not show this same trend in RBS but have possessed larger RBS than any other cetacean ever since the beginning of their existence. The rate of RBS evolution in Odontoceti is significantly slower than in other Cetacea and slower than the rate of Odontoceti body size evolution. These results suggest that toothed whales’ history is characterized by high and conservative relative encephalization. Feeding lifestyle does not explain these patterns, while the appearance of echolocation within stem group Odontoceti remains a viable candidate for them.

Keywords

Encephalization Relative brain size Cetaceans Odontoceti Mysticeti 

Notes

Acknowledgements

We are grateful to Francesco Carotenuto for critical comments on an earlier version of the manuscript. Phil Gingerich provided some crucial data on extinct cetaceans’ brain mass estimates.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11692_2019_9485_MOESM1_ESM.docx (1.3 mb)
Supplementary file1 (DOCX 1314 kb)
11692_2019_9485_MOESM2_ESM.xlsx (16 kb)
Supplementary file2 (XLSX 16 kb)
11692_2019_9485_MOESM3_ESM.xlsx (22 kb)
Supplementary file3 (XLSX 22 kb)
11692_2019_9485_MOESM4_ESM.xlsx (13 kb)
Supplementary file4 (XLSX 13 kb)
11692_2019_9485_MOESM5_ESM.docx (13 kb)
Supplementary file5 (DOCX 13 kb)
11692_2019_9485_MOESM6_ESM.docx (19 kb)
Supplementary file6 (DOCX 18 kb)
11692_2019_9485_MOESM7_ESM.R
Supplementary file7 (R 3 kb)

References

  1. Aiello, L. C., & Wells, J. C. (2002). Energetics and the evolution of the genus Homo. Annual Review of Anthropology, 31(1), 323–338.  https://doi.org/10.1146/annurev.anthro.31.040402.085403.CrossRefGoogle Scholar
  2. Berta, A., Lanzetti, A., Ekdale, E. G., & Deméré, T. A. (2016). From teeth to baleen and raptorial to bulk filter feeding in mysticete cetaceans: The role of paleontological, genetic, and geochemical data in feeding evolution and ecology. Integrative and Comparative Biology, 56(6), 1271–1284.  https://doi.org/10.1093/icb/icw128.CrossRefPubMedGoogle Scholar
  3. Berta, A., Sumach, J. L., & Kovacs, K. M. (2007). Marine mammals: Evolutionary biology (second edition). Polar Research.  https://doi.org/10.3402/polar.v26i1.6210.CrossRefGoogle Scholar
  4. Bianucci, G., & Landini, W. (2002). A new short-rostrum odontocete (Mammalia: Cetacea) from the Middle Miocene of the eastern Netherlands. Beaufortia, 52(11), 187–196.Google Scholar
  5. Cancho, R. F. I., & Lusseau, D. (2006). Long-term correlations in the surface behavior of dolphins. Europhysics Letters, 74(6), 1095–1101.  https://doi.org/10.1209/epl/i2005-10596-9.CrossRefGoogle Scholar
  6. Castiglione, S., Serio, C., Mondanaro, A., Di Febbraro, M., Profico, A., Girardi, G., et al. (2019). Simultaneous detection of macroevolutionary patterns in phenotypic means and rate of change with and within phylogenetic trees including extinct species. PLoS ONE, 14(1), e0210101.  https://doi.org/10.1371/journal.pone.0210101.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Castiglione, S., Tesone, G., Piccolo, M., Melchionna, M., Mondanaro, A., Serio, C., et al. (2018). A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods in Ecology and Evolution, 62, 181.  https://doi.org/10.1111/2041-210X.12954.CrossRefGoogle Scholar
  8. Churchill, M., Geisler, J. H., Beatty, B. L., & Goswami, A. (2018). Evolution of cranial telescoping in echolocating whales (Cetacea: Odontoceti). Evolution, 72(5), 1092–1108.  https://doi.org/10.1111/evo.13480.CrossRefPubMedGoogle Scholar
  9. Clapham, P. J. (1996). The social and reproductive biology of Humpback Whales: An ecological perspective. Mammal Review, 26(1), 27–49.  https://doi.org/10.1111/j.1365-2907.1996.tb00145.x.CrossRefGoogle Scholar
  10. Clementz, M. T., Goswami, A., Gingerich, P. D., & Koch, P. L. (2006). Isotopic records from early whales and sea cows: Contrasting patterns of ecological transition. Journal of Vertebrate Paleontology, 26(2), 355–370.  https://doi.org/10.1671/0272-4634(2006)26[355:IRFEWA]2.0.CO;2.CrossRefGoogle Scholar
  11. Connor, R. C. (2007). Dolphin social intelligence: Complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1480), 587–602.  https://doi.org/10.1098/rstb.2006.1997.CrossRefGoogle Scholar
  12. DeCasien, A. R., Williams, S. A., & Higham, J. P. (2017). Primate brain size is predicted by diet but not sociality. Nature Ecology and Evolution, 1(5), 0112.  https://doi.org/10.1038/s41559-017-0112.CrossRefGoogle Scholar
  13. Eisenberg, J. F., & Wilson, D. E. (1978). Relative brain size and feeding strategies in the chiroptera. Evolution, 32(4), 740–751.  https://doi.org/10.1111/j.1558-5646.1978.tb04627.x.CrossRefPubMedGoogle Scholar
  14. Freckleton, R. P. (2002). On the misuse of residuals in ecology: Regression of residuals vs. multiple regression. Journal of Animal Ecology, 71(3), 542–545.  https://doi.org/10.1046/j.1365-2656.2002.00618.x.CrossRefGoogle Scholar
  15. Freckleton, R. P. (2009). The seven deadly sins of comparative analysis. Journal of Evolutionary Biology, 22(7), 1367–1375.  https://doi.org/10.1111/j.1420-9101.2009.01757.x.CrossRefPubMedGoogle Scholar
  16. Fordyce, R. E. (1992). Cetacean evolution and Eocene/Oligocene environments. In D. R. Prothero & W. A. Berggren (Eds.), Eocene–Oligocene climatic and biotic evolution (pp. 368–381). Princeton, NJ: Princeton University Press.  https://doi.org/10.1515/9781400862924.368.CrossRefGoogle Scholar
  17. Geisler, J. H., Colbert, M. W., & Carew, J. L. (2014). A new fossil species supports an early origin for toothed whale echolocation. Nature, 508(7496), 383.CrossRefGoogle Scholar
  18. Gingerich, P. D. (2015). body weight and relative brain size (encephalization) in Eocene Archaeoceti (Cetacea). Journal of Mammalian Evolution, 23(1), 17–31.  https://doi.org/10.1007/s10914-015-9304-y.CrossRefGoogle Scholar
  19. Gittleman, J. L. (1986). Carnivore brain size, behavioral ecology, and phylogeny. Journal of Mammalogy, 67(1), 23–36.  https://doi.org/10.2307/1380998.CrossRefGoogle Scholar
  20. Harvey, P. H., & Pagel, M. D. (1988). The allometric approach to species differences in brain size. Human Evolution, 3(6), 461–472.  https://doi.org/10.1007/BF02436332.CrossRefGoogle Scholar
  21. Herculano-Houzel, S., Catania, K., Manger, P. R., & Kaas, J. H. (2015). Mammalian brains are made of these: A dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass. Brain, Behavior and Evolution, 86(3–4), 145–163.  https://doi.org/10.1159/000437413.CrossRefPubMedGoogle Scholar
  22. Herman, L. M., Matus, D. S., Herman, E. Y. K., Ivancic, M., & Pack, A. A. (2001). The bottlenosed dolphin’s (Tursiops truncatus) understanding of gestures as symbolic representations of its body parts. Animal Learning and Behavior, 29(3), 250–264.  https://doi.org/10.3758/BF03192891.CrossRefGoogle Scholar
  23. Ichishima, H., Barnes, L. G., Fordyce, R. E., Kimura, M., & Bohaska, D. J. (1994). A review of kentriodontine dolphins (Cetacea, Delphinoidea, Kentriodontidae): Systematics and biogeography. The Island Arc, 3(4), 486–492.  https://doi.org/10.1111/j.1440-1738.1994.tb00127.x.CrossRefGoogle Scholar
  24. Jerison, H. J. (1985). Animal intelligence as encephalization. Philosophical Transactions of the Royal Society B: Biological Sciences, 308(1135), 21–35.  https://doi.org/10.1098/rstb.1985.0007.CrossRefGoogle Scholar
  25. Johnston, C., & Berta, A. (2010). Comparative anatomy and evolutionary history of suction feeding in cetaceans. Marine Mammal Science, 27(3), 493–513.  https://doi.org/10.1111/j.1748-7692.2010.00420.x.CrossRefGoogle Scholar
  26. Kratsch, C., & McHardy, A. C. (2014). RidgeRace: Ridge regression for continuous ancestral character estimation on phylogenetic trees. Bioinformatics, 30(17), i527–i533.  https://doi.org/10.1093/bioinformatics/btu477.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Krützen, M., Mann, J., Heithaus, M. R., Connor, R. C., Bejder, L., & Sherwin, W. B. (2005). Cultural transmission of tool use in bottlenose dolphins. Proceedings of the National Academy of Sciences of USA, 102(25), 8939–8943.  https://doi.org/10.1073/pnas.0500232102.CrossRefGoogle Scholar
  28. Lenth, R. (2018). Emmeans: Estimated marginal means, aka least-squares means. R package version, 1(1).Google Scholar
  29. Lusseau, D. (2006). Why do dolphins jump? Interpreting the behavioural repertoire of bottlenose dolphins (Tursiops sp.) in Doubtful Sound, New Zealand. Behavioural Processes, 73(3), 257–265.  https://doi.org/10.1016/j.beproc.2006.06.006.CrossRefPubMedGoogle Scholar
  30. Mace, G. M., Harvey, P. H., & Clutton-Brock, T. H. (2009). Brain size and ecology in small mammals. Journal of Zoology, 193(3), 333–354.  https://doi.org/10.1111/j.1469-7998.1981.tb03449.x.CrossRefGoogle Scholar
  31. Manger, P. R. (2013). Questioning the interpretations of behavioral observations of cetaceans: Is there really support for a special intellectual status for this mammalian order? Neuroscience, 250, 664–696.  https://doi.org/10.1016/j.neuroscience.2013.07.041.CrossRefPubMedGoogle Scholar
  32. Manger, P. R. (2006). An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. Biological Reviews, 81(2), 293–338.  https://doi.org/10.1017/S1464793106007019.CrossRefPubMedGoogle Scholar
  33. Marino, L., Connor, R. C., Fordyce, R. E., Herman, L. M., Hof, P. R., Lefebvre, L., et al. (2007). Cetaceans have complex brains for complex cognition. PLoS Biology, 5(5), e139.  https://doi.org/10.1371/journal.pbio.0050139.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Marino, L. (2004). Dolphin cognition. Current Biology, 14(21), R910–R911.  https://doi.org/10.1016/j.cub.2004.10.010.CrossRefPubMedGoogle Scholar
  35. Marino, L., McShea, D. W., & Uhen, M. D. (2004). Origin and evolution of large brains in toothed whales. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 281(2), 1247–1255.  https://doi.org/10.1002/ar.a.20128.CrossRefGoogle Scholar
  36. Marx, F. G., & Fordyce, R. E. (2015). Baleen boom and bust: A synthesis of mysticete phylogeny, diversity and disparity. Open Science, 2(4), 140434.  https://doi.org/10.1098/rsos.140434.CrossRefGoogle Scholar
  37. May-Collado, L. J., Agnarsson, I., & Wartzok, D. (2007). Phylogenetic review of tonal sound production in whales in relation to sociality. BMC Evolutionary Biology, 7(1), 136.  https://doi.org/10.1186/1471-2148-7-136.CrossRefPubMedPubMedCentralGoogle Scholar
  38. McCurry, M. R., Fitzgerald, E. M. G., Evans, A. R., Adams, J. W., & McHenry, C. R. (2017). Skull shape reflects prey size niche in toothed whales. Biological Journal of the Linnean Society, 121(4), 936–946.  https://doi.org/10.1093/biolinnean/blx032.CrossRefGoogle Scholar
  39. McGowen, M. R., Gatesy, J., & Wildman, D. E. (2014). Molecular evolution tracks macroevolutionary transitions in Cetacea. Trends in Ecology and Evolution, 29(6), 336–346.  https://doi.org/10.1016/j.tree.2014.04.001.CrossRefPubMedGoogle Scholar
  40. Milinkovitch, M. C. (1995). Molecular phylogeny of cetaceans prompts revision of morphological transformations. Trends in Ecology and Evolution, 10(8), 328–334.  https://doi.org/10.1016/S0169-5347(00)89120-X.CrossRefPubMedGoogle Scholar
  41. Montgomery, S. H., Mundy, N. I., & Barton, R. A. (2016). Brain evolution and development: Adaptation, allometry and constraint. Proceedings of the Royal Society B: Biological Sciences.  https://doi.org/10.1098/rspb.2016.0433.CrossRefPubMedGoogle Scholar
  42. Montgomery, S. H., Geisler, J. H., McGowen, M. R., Fox, C., Marino, L., & Gatesy, J. (2013). The evolutionary history of cetacean brain and body size. Evolution, 67(11), 3339–3353.  https://doi.org/10.1111/evo.12197.CrossRefPubMedGoogle Scholar
  43. Mortensen, H. S., Pakkenberg, B., Dam, M., Dietz, R., Sonne, C., Mikkelsen, B., et al. (2014). Quantitative relationships in delphinid neocortex. Frontiers in Neuroanatomy, 8(46), 301.  https://doi.org/10.3389/fnana.2014.00132.CrossRefGoogle Scholar
  44. Navarrete, A. F., Blezer, E. L., Pagnotta, M., de Viet, E. S., Todorov, O. S., Lindenfors, P., et al. (2018). Primate brain anatomy: New volumetric MRI measurements for neuroanatomical studies. Brain, Behavior and Evolution, 91(2), 109–117.  https://doi.org/10.1159/000488136.CrossRefPubMedGoogle Scholar
  45. Park, T., Fitzgerald, E. M. G., & Evans, A. R. (2016). Ultrasonic hearing and echolocation in the earliest toothed whales. Biology Letters.  https://doi.org/10.1098/rsbl.2016.0060.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Perea, G., Navarrete, M., & Araque, A. (2009). Tripartite synapses: Astrocytes process and control synaptic information. Trends in Neurosciences, 32(8), 421–431.  https://doi.org/10.1016/j.tins.2009.05.001.CrossRefPubMedGoogle Scholar
  47. Raia, P., Castiglione, S., Serio, C., Mondanaro, A., Melchionna, M., Di Febbraro, M., et al. (2019). RRphylo: Phylogenetic ridge regression methods for comparative studies. R package version 2.1.0. https://github.com/pasraia/RRphylo.
  48. Reidenberg, J. S., & Laitman, J. T. (2004). Anatomy of infrasonic communication in baleen whales: Divergent mechanisms of sound generation in mysticetes and odontocetes. The Journal of the Acoustical Society of America, 115(5), 2556–2556.  https://doi.org/10.1121/1.4783866.CrossRefGoogle Scholar
  49. Reiss, D., & Marino, L. (2001). Mirror self-recognition in the bottlenose dolphin: A case of cognitive convergence. Proceedings of the National Academy of Sciences of USA, 98(10), 5937–5942.  https://doi.org/10.1073/pnas.101086398.CrossRefGoogle Scholar
  50. Rendell, L., & Whitehead, H. (2001). Culture in whales and dolphins. Behavioral and Brain Sciences, 24(02), 309–324.  https://doi.org/10.1017/S0140525X0100396X.CrossRefPubMedGoogle Scholar
  51. Ridgway, S. H., Carlin, K. P., Van Alstyne, K. R., Hanson, A. C., & Tarpley, R. J. (2016). Comparison of dolphins’ body and brain measurements with four other groups of cetaceans reveals great diversity. Brain, Behavior and Evolution, 88(3–4), 235–257.  https://doi.org/10.1159/000454797.CrossRefPubMedGoogle Scholar
  52. Shultz, S., & Dunbar, R. (2010). Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proceedings of the National Academy of Sciences of USA, 107(50), 21582–21586.  https://doi.org/10.1073/pnas.1005246107.CrossRefGoogle Scholar
  53. Slater, G. J., Price, S. A., Santini, F., & Alfaro, M. E. (2010). Diversity versus disparity and the radiation of modern cetaceans. Proceedings. Biological Sciences/The Royal Society, 277(1697), 3097–3104.  https://doi.org/10.1098/rspb.2010.0408.CrossRefGoogle Scholar
  54. Steeman, M. E., Hebsgaard, M. B., Fordyce, R. E., Ho, S. Y., Rabosky, D. L., Nielsen, R., et al. (2009). Radiation of extant cetaceans driven by restructuring of the oceans. Systematic Biology, 58(6), 573–585.…CrossRefGoogle Scholar
  55. Thewissen, J. G. M., Cooper, L. N., Clementz, M. T., Bajpai, S., & Tiwari, B. N. (2007). Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature, 450(7173), 1190–1194.  https://doi.org/10.1038/nature06343.CrossRefPubMedGoogle Scholar
  56. Uhen, M. D. (2004). Form, function, and anatomy of Dorudon atrox (Mammalia, Cetacea): An Archaeocete from the Middle to Late Eocene of Egypt. Papers on Paleontology, 34, 1–222.Google Scholar
  57. Weisbecker, V., Blomberg, S., Goldizen, A. W., Brown, M., & Fisher, D. (2015). The evolution of relative brain size in marsupials is energetically constrained but not driven by behavioral complexity. Brain, Behavior and Evolution, 85(2), 125–135.  https://doi.org/10.1159/000377666.CrossRefPubMedGoogle Scholar
  58. Whiten, A. (2001). Imitation and cultural transmission in apes and cetaceans. Behavioral and Brain Sciences, 24(02), 359–360.  https://doi.org/10.1017/S0140525X01603960.CrossRefGoogle Scholar
  59. Wright, A., Scadeng, M., Stec, D., Dubowitz, R., Ridgway, S., & Leger, J. S. (2017). Neuroanatomy of the killer whale (Orcinus orca): A magnetic resonance imaging investigation of structure with insights on function and evolution. Brain Structure and Function, 222(1), 417–436.  https://doi.org/10.1007/s00429-016-1225-x.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento Di Scienze Della Terra, Dell’Ambiente E Delle RisorseUniversità Di Napoli Federico IINaplesItaly
  2. 2.Dipartimento Di Scienze Della TerraUniversità Degli Studi Di FirenzeFlorenceItaly
  3. 3.Dipartimento Di Bioscienze E TerritorioUniversità del MolisePescheItaly

Personalised recommendations