Advertisement

Evolutionary Biology

, Volume 46, Issue 1, pp 14–34 | Cite as

Patterns and Constraints of Craniofacial Variation in Colobine Monkeys: Disentangling the Effects of Phylogeny, Allometry and Diet

  • Ronan Ledevin
  • Daisuke KoyabuEmail author
Research Article

Abstract

Leaf-eating monkeys (colobines) are a highly diversified subfamily with 61 species in ten genera, in which patterns and constraints of morphological evolution are still poorly resolved. In the present study, we measured the skulls of 452 specimens collected from different museums worldwide. Using one of the most extensive samples ever employed, and geometric morphometric techniques, we aimed to elucidate the evolutionary processes that have led to the craniofacial diversification of colobines. Our comprehensive analyses of the colobine cranium demonstrated that phylogeny is the first order signal to emerge, with clear interspecific patterns of differentiation. Allometric trend constrains shape variation for most colobine taxa, but to a lesser degree than phylogeny. We also confirmed that diet is significantly associated with the variation in cranial shape among colobines. In particular, the mechanical advantage of the masseter for biting at the anterior dentition is linked to seed intake. We postulate that such ecomorphological patterns explain, in part, the non-phylogenetic and non-allometric variations in the colobine skull, and indicate the importance of diet in interspecific resource partitioning, allowing for species coexistence.

Keywords

Colobinae Diversification Diet Morphometrics 

Notes

Acknowledgements

Authors thank the museum staffs for access to specimens and Goro Hanya, Takeshi Nishimura, Gen Suwa, Daisuke Shimizu, and Masanaru Takai for discussions. This study was supported by KAKENHI (Grant Nos. 26711023, 18H02492, 18H04816, and 18K19359), by the Cooperation Research Program of Primate Research Institute, Kyoto University (Grant No. 2010-A-3) and by the LabEx Sciences Archéologiques de Bordeaux (Grant No. ANR-10-LABX-52).

Supplementary material

11692_2019_9469_MOESM1_ESM.xlsx (32 kb)
Online Resource 1 List of the specimens analyzed in this study, with accession ID and institutes housing them: Natural History Museum (BMNH), Primate Research Institute of Kyoto University (KUPRI), Smithsonian National Museum of Natural History (USNM), and Zoological Reference Collection of Lee Kong Chian Natural History Museum at the National University of Singapore (ZRC)—Supplementary material 1 (XLSX 32 KB)
11692_2019_9469_MOESM2_ESM.pdf (394 kb)
Online Resource 2 Measurements employed in the mechanical advantage analyses—Supplementary material 2 (PDF 393 KB)
11692_2019_9469_MOESM3_ESM.xlsx (9 kb)
Online Resource 3 Landmark definitions employed in the geometric morphometric analyses—Supplementary material 3 (XLSX 9 KB)
11692_2019_9469_MOESM4_ESM.xlsx (23 kb)
Online Resource 4 Mean values of measured moment arms and calculated mechanical advantages of the masseter, temporalis, and medial pterygoid muscles for each species. Canine position measurement is not available for T. policephalus due to missing canine in the studied specimen—Supplementary material 4 (XLSX 23 KB)
11692_2019_9469_MOESM5_ESM.xlsx (10 kb)
Online Resource 5 Pearson’s correlation coefficients for comparsions between mechanical advantage and centroid size—Supplementary material 5 (XLSX 9 KB)
11692_2019_9469_MOESM6_ESM.xls (52 kb)
Online Resource 6 Inter-specific comparison of size using Kruskal-Wallis tests. Significant probabilities are either in bold (P < 0.001) or in italic (P < 0.05). Species for which the number of specimens available if lower than five are written in red—Supplementary material 6 (XLS 51 KB)
11692_2019_9469_MOESM7_ESM.xlsx (10 kb)
Online Resource 7 Basic measurements (n = 15) and centroid size (n = 2) for Simias concolor—Supplementary material 7 (XLSX 9 KB)
11692_2019_9469_MOESM8_ESM.pdf (1.9 mb)
Online Resource 8 Alternative representation of shape deformations associated to: 1) shape axes bgPC1, bgPC2 and bgPC3, 2) allometry, and 3) 2B-PLS. Here the red dots correspond to the reference configuration compared to the target configuration (in green). The line between each red dot and its homologous green dot represents the deformation—Supplementary material 8 (PDF 1894 KB)

References

  1. Anderson, J., Cowlishaw, G., & Rowcliffe, J. M. (2007). Effects of forest fragmentation on the abundance of Colobus angolensis palliatus in Kenya’s Coastal Forests. International Journal of Primatology, 28, 637–655.Google Scholar
  2. Auta, J., & Anwa, E. P. (2007). Preliminary studies on Albizzia lebbeck seeds: Proximate analysis and phytochemical screening. Research Journal of Biological Sciences, 2, 33–35.Google Scholar
  3. Benefit, B. R., & McCrossin, M. L. (1991) Ancestral facial morphology of Old World higher primates. Proceedings of the National Academy of Sciences United States of America, 88, 5267–5271.Google Scholar
  4. Bennett, E. L. (1983). The banded langur: Ecology of a colobine in West Malaysian rain-forest. Ph.D. thesis, University of Cambridge, Cambridge.Google Scholar
  5. Bennett, E. L., & Davies, A. G. (1994). The ecology of Asian colobines. In A. G. Davies & J. F. Oates (Eds.), Colobine monkeys: Their ecology, behaviour and evolution (pp. 129–171). Cambridge: Cambridge University Press.Google Scholar
  6. Bennett, E. L., & Sebastian, A. C. (1988). Social organization and ecology of proboscis monkeys (Nasalis larvatus) in mixed coastal forest in Sarawak. International Journal of Primatology, 9, 233–255.Google Scholar
  7. Bergmann, C. (1848). Über die Verhältnisse der Wärme-ökonomie der Thiere zu ihrer Grösse. Göttinger Studien, 3, 595–708.Google Scholar
  8. Bouvier, M. (1986). Biomechanical scaling of mandibular dimensions in New World monkeys. International Journal of Primatology, 7, 551–567.Google Scholar
  9. Brugiere, D., Gautier, J. P., Moungazi, A., & Gautier-Hion, A. (2002). Primate diet and biomass in relation to vegetation composition and fruiting phenology in a rain forest in Gabon. International Journal of Primatology, 23, 999–1024.Google Scholar
  10. Bruner, E. (2007). Cranial shape and size variation in human evolution: Structural and functional perspectives. Child’s nervous system, 23, 1357–1365.PubMedGoogle Scholar
  11. Burness, G. P., Diamond, J., & Flannery, T. (2001). Dinosaurs, dragons, and dwarfs: The evolution of maximal body size. Proceedings of the National Academy of Sciences of the United States of America, 98, 14518–14523.PubMedPubMedCentralGoogle Scholar
  12. Cardini, A., & Elton, S. (2009). The radiation of red colobus monkeys (Primates, Colobinae): Morphological evolution in a clade of endangered African primates. Zoological Journal of the Linnean Society, 157, 197–224.Google Scholar
  13. Chapman, C. A., Chapman, L. J., Cords, M., Gathua, J. M., Gautier-Hion, A., Lambert, J. E., Rode, K., Tutin, C. E. G., & White, L. J. T. (2004). Variation in the diets of Cercopithecus species: Differences within forests, among forests, and across species. In M. E. Glenn & M. Cords (Eds.), The guenons: Diversity and adaptation in African monkeys (pp. 325–350). New York: Kluwer Academic.Google Scholar
  14. Chapman, C. A., Chapman, L. J., & Gillespie, T. R. (2002). Scale issues in the study of primate foraging: Red colobus of Kibale National Park. American Journal of Physical Anthropology, 117, 349–363.PubMedGoogle Scholar
  15. Chatterjee, H. J., Ho, S. Y. W., Barnes, I., & Groves, C. (2009). Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC Evolutionary Biology, 9, 259.PubMedPubMedCentralGoogle Scholar
  16. Chivers, D. J., & Hladik, C. M. (1980). Morphology of the gastrointestinal tract in primates: Comparisons with other mammals in relation to diet. Journal of Morphology, 166, 337–386.PubMedGoogle Scholar
  17. Clutton-Brock, T. H. (1975). Feeding behaviour of red colobus and black and white colobus in East Africa. Folia Primatologica, 23, 165–207.Google Scholar
  18. Culhane, A. C., Perrière, G., Considine, E. C., Cotter, T. G., & Higgins, D. G. (2002). Between-group analysis of microarray data. Bioinformatics, 18, 1600–1608.PubMedGoogle Scholar
  19. Curtin, S. H. (1976). Niche separation in sympatric Malaysian leaf-monkeys (Presbytis obscura and Presbytis melalophos). Yearbook of Physical Anthropology, 20, 421–439.Google Scholar
  20. Curtin, S. H. (1980). Dusky and banded leaf monkeys. In D. J. Chivers (Ed.), Malayan forest primates: Ten years' study in tropical rain forest (pp. 105–145). New York: Plenum Press.Google Scholar
  21. Daegling, D. J., Granatosky, M. C., McGraw, W. S., & Rapoff, A. J. (2011). Reduced stiffness of alveolar bone in the colobine mandible. American Journal of Physical Anthropology, 144, 421–431.PubMedGoogle Scholar
  22. Daegling, D. J., & McGraw, W. S. (2001). Feeding, diet, and jaw form in West African Colobus and Procolobus. International Journal of Primatology, 22, 1033–1055.Google Scholar
  23. Damuth, J., & MacFadden, B. J. (1990). Body size in mammalian paleobiology: Estimation and biological implications. Cambridge: Cambridge University Press.Google Scholar
  24. Davies, A. G. (1991). Seed-eating by red leaf monkeys (Presbytis rubicunda) in dipterocarp forest of northern Borneo. International Journal of Primatology, 12, 119–144.Google Scholar
  25. Davies, A. G., Bennett, E. L., & Waterman, P. G. (1988). Food selection by two South-east Asian colobine monkeys (Presbytis rubicunda and Presbytis melalophos) in relation to plant chemistry. Biological Journal of the Linnean Society, 34, 33–56.Google Scholar
  26. Davies, A. G., Oates, J. F., & Dasilva, G. L. (1999). Patterns of frugivory in three West African colobine monkeys. International Journal of Primatology, 20, 327–357.Google Scholar
  27. Dayan, T., & Simberloff, D. (1998). Size patterns among competitors: Ecological character displacement and character release in mammals,with special reference to island populations. Mammal Review, 28, 99–124.Google Scholar
  28. Dela, J. D. S. (2007). Seasonal food use strategies of Semnopithecus vetulus nestor, at Panadura and Piliyandala, Sri Lanka. International Journal of Primatology, 28(3), 607–626.Google Scholar
  29. Delson, E., Terranova, C. J., Jungers, W. L., Sargis, E. J., Jablonski, N. G., & Dechow, P. C. (2000). Body mass in Cercopithecidae (Primates, Mammalia): Estimation and scaling in extinct and extant taxa. Anthropological Papers of the American Museum of Natural History, 83, 1–159.Google Scholar
  30. Drake, A., & Klingenberg, C. (2008) The pace of morphological change: Historical transformation of skull shape in St Bernard dogs. Proceedings of the Royal Society B: Biological Sciences, 275, 71–76.PubMedGoogle Scholar
  31. Dray, S., & Dufour, A.-B. (2007). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22, 1–20.Google Scholar
  32. Duc, H. M., Baxter, G. S., & Page, M. J. (2009). Diet of Pygathrix nigripes in southern Vietnam. International Journal of Primatology, 30, 15–28.Google Scholar
  33. Ehlers Smith, D. A., Husson, S. J., Ehlers Smith, Y. C., & Harrison, M. E. (2013). Feeding ecology of red langurs in sabangau tropical peat-swamp forest, Indonesian Borneo: Extreme granivory in a non-masting forest. American Journal of Primatology, 75, 848–859.PubMedGoogle Scholar
  34. Emerson, S. B., & Bramble, D. M. (1993). Scaling, allometry and skull design. In J. Hanken & B. K. Hall (Eds.), The skull (Vol. 3, pp. 384–421). Chicago: University of Chicago Press.Google Scholar
  35. Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125, 1–15.Google Scholar
  36. Fimbel, C., Vedder, A., Dierenfeld, E., & Mulindahabi, F. (2001). An ecological basis for large group size in Colobus angolensis in the Nyungwe Forest, Rwanda. African Journal of Ecology, 39, 83–92.Google Scholar
  37. Fleagle, J. G., & McGraw, W. S. (1999). Skeletal and dental morphology supports diphyletic origin of baboons and mandrills. Proceedings of the National Academy of Sciences of the United States of America, 96, 1157–1161.PubMedPubMedCentralGoogle Scholar
  38. Furuuchi, K., Koyabu, D., Mori, K., & Endo, H. (2013). Physiological cross-sectional area of the masticatory muscles in the giraffe (Giraffa camelopardalis). Mammal Study, 38, 67–71.Google Scholar
  39. Groves, C. P. (2005). Subfamily Colobinae. In D. E. Wilson & D. M. Reeder (Eds.), Mammal species of the world (3rd ed., pp. 167–177). Baltimore: Johns Hopkins University Press.Google Scholar
  40. Gupta, A. K., & Kumar, A. (1994). Feeding ecology and conservation of the Phayre’s leaf monkey Presbytis phayrei in northeast India. Biolological Conservation, 69, 301–306.Google Scholar
  41. Hanya, G., & Bernard, H. (2012). Fallback foods of red leaf monkeys (Presbytis rubicunda) in Danum Valley, Borneo. International Journal of Primatology, 33, 322–337.Google Scholar
  42. Hanya, G., & Bernard, H. (2015). Different roles of seeds and young leaves in the diet of red leaf monkeys (Presbytis rubicunda): Comparisons of availability, nutritional properties, and associated feeding behavior. International Journal of Primatology, 36, 177–193.Google Scholar
  43. Harris, T. R., & Chapman, C. A. (2007). Variation in diet and ranging of black and white colobus monkeys in Kibale National Park, Uganda. Primates, 48, 208–221.PubMedGoogle Scholar
  44. Huang, Z. P., Huo, S., Yang, S. G., Cui, L. W., & Xiao, W. (2010). Leaf choice in black-and-white snub-nosed monkeys Rhinopithecus bieti is related to the physical and chemical properties of leaves. Current Zoology, 56, 643–649.Google Scholar
  45. Hull, D. B. (1979). A craniometric study of the black and white Colobus Illiger 1811 (Primates: Cercopithecoidea). American Journal of Physical Anthropology, 51, 163–181.PubMedGoogle Scholar
  46. Hylander, W. L. (1979a). Mandibular function in Galago crassicaudatus and Macaca fascicularis: An in vivo approach to stress analysis of the mandible. Journal of Morphology, 159, 253–296.PubMedGoogle Scholar
  47. Hylander, W. L. (1979b). The functional significance of primate mandibular form. Journal of Morphology, 160, 223–239.PubMedGoogle Scholar
  48. Ito, K., & Endo, H. (2016). Comparative study of physiological cross-sectional area of masticatory muscles among species of Carnivora. Mammal Study, 41, 181–190.Google Scholar
  49. Jablonski, N. G. (1998). The evolution of doucs and snub-nosed monkeys and the question of the phyletic unity of the odd-nosed colobines. In N. G. Jablonski (Eds.), The Natural History of the Doucs and Snub-Nosed Monkeys (pp. 13–52). Singapore: World Scientific.Google Scholar
  50. Kamilar, J. M., & Paciulli, L. M. (2008). Examining the extinction risk of specialized folivores: A comparative study of colobine monkeys. American Journal of Primatology, 70, 816–827.PubMedGoogle Scholar
  51. Karanth, K. P., Singh, L., Collura, R. V., & Stewart, C. B. (2008). Molecular phylogeny and biogeography of langurs and leaf monkeys of South Asia (Primates: Colobinae). Molecular Phylogenetics and Evolution, 46, 683–694.PubMedGoogle Scholar
  52. Kay, R. F. (1975). The functional adaptations of primate molar teeth. American Journal of Physical Anthropology, 43, 195–215.PubMedGoogle Scholar
  53. Kibaja, M. (2014). Diet of the ashy red colobus (Piliocolobus tephrosceles) and crop-raiding in a forest-farm mosaic, Mbuzi, Rukwa Region, Tanzania. Primate Conservation, 28, 109–116.Google Scholar
  54. Kinzey, W. G. (1992). Dietary and dental adaptations in the Pitheciinae. American Journal of Physical Anthropology, 88, 499–514.PubMedGoogle Scholar
  55. Kirkpatrick, R. C., & Grueter, C. C. (2010). Snub-nosed monkeys: Multilevel societies across varied environments. Evolutionary Anthropology, 19, 98–113.Google Scholar
  56. Kool, K. M. (1993). The diet and feeding behavior of the silver leaf monkey (Trachypithecus auratus sondaicus) in Indonesia. International Journal of Primatology, 14, 667–700.Google Scholar
  57. Koyabu, D., Oshida, T., Nguyen, S. T., Dang, C. N., Nguyen, N. X., Nguyen, D. X., Motokawa, M., Kimura, J., Sasaki, M., & Endo, H. (2012). Comparison of jaw muscle morphology in two sympatic callosciurine squirrels (Callosciurus erythraeus and Dremomys rufigenis) in Vietnam. Mammal Study, 37, 237–242.Google Scholar
  58. Koyabu, D. B., & Endo, H. (2009). Craniofacial variation and dietary adaptations of African colobines. Journal of Human Evolution, 56, 525–536.PubMedGoogle Scholar
  59. Koyabu, D. B., & Endo, H. (2010). Craniodental mechanics and diet in asian colobines: Morphological evidence of mature seed predation and sclerocarpy. American Journal of Physical Anthropology, 148, 137–148.Google Scholar
  60. Langsrud, Ø., & Mevik, B. (2012). ffmanova: Fifty-fifty MANOVA. R package version 0.2-2. Retrieved from https://CRAN.R-project.org/package=ffmanova.
  61. Lavrenchenko, L. a. (2014). Hybrid speciation in mammals: Illusion or reality? Biology Bulletin Reviews, 4, 198–209.Google Scholar
  62. Ledevin, R., Quéré, J.-P., Michaux, J. R., & Renaud, S. (2012). Can tooth differentiation help to understand species coexistence? The case of wood mice in China. Journal of Zoological Systematics and Evolutionary Research, 50, 315–327.Google Scholar
  63. Li, B., Pan, R., & Oxnard, C. E. (2002). Extinction of snub-nosed monkeys in China during the past 400 years. International Journal of Primatology, 23, 1227–1244.Google Scholar
  64. Li, Y., Jiang, Z., Li, C., & Grueter, C. C. (2010). Effects of seasonal folivory and frugivory on ranging patterns in Rhinopithecus roxellana. International Journal of Primatology, 31, 609–626.Google Scholar
  65. Liedigk, R., Yang, M., Jablonski, N. G., Momberg, F., Geissmann, T., Lwin, N., Hla, T. H., Liu, Z., Wong, B., Ming, L., Yongcheng, L., Zhang, Y. P., Nadler, T., Zinner, D., & Roos, C. (2012) Evolutionary history of the odd-nosed monkeys and the phylogenetic position of the newly described myanmar snub-nosed monkey Rhinopithecus strykeri. PLoS ONE, 7, e37418.PubMedPubMedCentralGoogle Scholar
  66. Liu, X., Stanford, C. B., Yang, J., Yao, H., & Li, Y. (2013). Foods eaten by the sichuan snub-nosed monkey (Rhinopithecus roxellana) in Shennongjia National Nature Reserve, China, in relation to nutritional chemistry. American Journal of Primatology, 75, 860–871.PubMedGoogle Scholar
  67. Lomolino, M. V. (1985). Body size of mammals on islands: The island rule reexamined. The American Naturalist, 125, 310–316.Google Scholar
  68. Lucas, P. W. (2004) Dental functional morphology: How teeth work (pp. 1–355). Cambridge: Cambridge University Press.Google Scholar
  69. Lucas, P. W., Beta, T., Darvell, B. W., Dominy, N. J., Essackjee, H. C., Lee, P. K. D., & Yuen, T. D. B. (2001). Field kit to characterize physical, chemical and spatial aspects of potential primate foods. Folia Primatologica, 72, 11–25.Google Scholar
  70. Lucas, P. W., Copes, L., Constantino, P. J., Vogel, E. R., Chalk, J., Talebi, M., Landis, M., & Wagner, M. (2012). Measuring the toughness of primate foods and its ecological value. International Journal of Primatology, 33, 598–610.Google Scholar
  71. Lucas, P. W., & Teaford, M. F. (1994). Functional morphology of colobine teeth. In A. G. Davies & J. F. Oates (Eds.), Colobine monkeys: Their ecology, behaviour and evolution (pp. 173–203). Cambridge: Cambridge University Press.Google Scholar
  72. Lucas, P. W., Turner, I. M., Dominy, N. J., & Yamashita, N. (2000). Mechanical defences to herbivory. Annals of Botany, 86, 913–920.Google Scholar
  73. Maddison, W. P., & Maddison, D. R. (2011) Mesquite: A modular system for evolutionary analysis. Version 2.75. Retrieved from http://mesquiteproject.org
  74. Maisels, F., Gautier-Hion, A., & Gautier, J.-P. (1994). Diets of two sympatric colobines in Zaire: More evidence on seed-eating in forests on poor soils. International Journal of Primatology, 15, 681–701.Google Scholar
  75. Marroig, G., Shirai, L. T., Porto, A., de Oliveira, F. B., & De Conto, V. (2009). The evolution of modularity in the mammalian skull II: Evolutionary consequences. Evolutionary Biology, 36, 136–148.Google Scholar
  76. Marsh, C. W. (1981). Diet choice among Red Colobus (Colobus badius rufomitratus) on the Tana River, Kenya. Folia Primatologica, 35(2–3), 147–178.Google Scholar
  77. Matsuda, I., Tuuga, A., Bernard, H., Sugau, J., & Hanya, G. (2013). Leaf selection by two Bornean colobine monkeys in relation to plant chemistry and abundance. Scientific Reports, 3, 1873.PubMedPubMedCentralGoogle Scholar
  78. Matsuda, I., Tuuga, A., Hashimoto, C., Bernard, H., Yamagiwa, J., Fritz, J., Tsubokawa, K., Yayota, M., Murai, T., Iwata, Y., & Clauss, M. (2014). Faecal particle size in free-ranging primates supports a ‘rumination’strategy in the proboscis monkey (Nasalis larvatus). Oecologia, 174, 1127–1137.PubMedGoogle Scholar
  79. Matsuda, I., Tuuga, A., & Higashi, S. (2009). The feeding ecology and activity budget of proboscis monkeys. American Journal of Primatology, 71, 478–492.PubMedGoogle Scholar
  80. McGraw, W. S., van Casteren, A., Kane, E., Geissler, E., Burrows, B., & Daegling, D. J. (2016). Feeding and oral processing behaviors of two colobine monkeys in Tai Forest, Ivory Coast. Journal of Human Evolution, 98, 90–102.PubMedGoogle Scholar
  81. McKey, D. B. (1978). Soils, vegetation, and seed-eating by black colobus monkeys. In G. Montgomery (Ed.), The ecology of arboreal folivores (pp. 423–437). Washington D.C: Smithsonian Institution Press.Google Scholar
  82. McKey, D. B., Gartlan, J. S., Waterman, P. G., & Choo, G. M. (1981). Food selection by black colobus monkeys (Colobus satanas) in relation to plant chemistry. Biological Journal of the Linnean Society, 16, 115–146.Google Scholar
  83. Md-Zain, B. M., Hasan, M. H., & Melnick, D. J. (2002) Defining evolutionary significant units for Presbytis melalophos conservation using mitochondrial DNA sequences. In Proceedings of the regional symposium on environment and natural resources, (Vol. 1, pp. 279–286).Google Scholar
  84. Meijaard, E., & Groves, C. P. (2004) The biogeographical evolution and phylogeny of the genus Presbytis. Primate Report, 68, 71–90.Google Scholar
  85. Meiri, S., & Dayan, T. (2003). On the validity of Bergmann’s rule. Journal of Biogeography, 30, 331–351.Google Scholar
  86. Meloro, C., Cáceres, N., Carotenuto, F., Sponchiado, J., Melo, G. L., Passaro, F., & Raia, P. (2014). In and out the Amazonia: Evolutionary ecomorphology in howler and capuchin monkeys. Evolutionary Biology, 41, 38–51.Google Scholar
  87. Meyer, D., Rinaldi, I. D., Ramlee, H., Perwitasari-Farajallah, D., Hodges, J. K., & Roos, C. (2011). Mitochondrial phylogeny of leaf monkeys (genus Presbytis, Eschscholtz, 1821) with implications for taxonomy and conservation. Molecular Phylogenetics and Evolution, 59, 311–319.PubMedGoogle Scholar
  88. Milton, K. (1979). Factors influencing leaf choice by howler monkeys: A test of some hypotheses of food selection by generalist herbivores. The American Naturalist, 114, 362–378.Google Scholar
  89. Minhós, T., Sousa, C., Vicente, L. M., & Bruford, M. W. (2015). Kinship and intragroup social dynamics in two sympatric African colobus species. International Journal of Primatology, 36, 871–886.Google Scholar
  90. Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K., & Bookstein, F. L. (2004). Comparison of cranial ontogenetic trajectories among great apes and humans. Journal of Human Evolution, 46, 679–698.PubMedGoogle Scholar
  91. Mturi, F. A. (1993). Ecology of the Zanzibar red colobus monkey, Colobus badius kirkii (Gray, 1968), in comparison with other red colobines. In J. C. Lovett & S. K. Wasser (Eds.), Biogeography and ecology of the rain forest of eastern Africa (pp. 243–266). Cambridge: Cambridge University Press.Google Scholar
  92. Nowak, K., Cardini, A., & Elton, S. (2008). Evolutionary acceleration and divergence in Procolobus kirkii. International Journal of Primatology, 29, 1313.Google Scholar
  93. Oates, J. F. (1988). The diet of the olive colobus monkey, Procolobus verus, in Sierra Leone. International Journal of Primatology, 9, 457–478.Google Scholar
  94. Oates, J. F. (1994). The natural history of African colobines. Colobine monkeys: Their ecology, behaviour and evolution. In A. G. Davies & J. F. Oates (Eds.), Colobine monkeys: Their ecology, behaviour and evolution (pp. 75–128). Cambridge: Cambridge University Press.Google Scholar
  95. Osterholz, M., Walter, L., & Roos, C. (2008). Phylogenetic position of the langur genera Semnopithecus and Trachypithecus among Asian colobines, and genus affiliations of their species groups. BMC Evolutionary Biology, 8, 58.PubMedPubMedCentralGoogle Scholar
  96. Pan, R. (2006). Dental morphometric variation between African and Asian colobines, with special reference to the other Old World monkeys. Journal of Morphology, 267, 1087–1098.PubMedGoogle Scholar
  97. Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290.PubMedGoogle Scholar
  98. Parra, R. (1978). Comparison of foregut and hindgut fermentation in herbivores. In G. Montgomery (Ed.), The ecology of arboreal folivores (pp. 205–230). Washington D.C.: Smithsonian Institution Press.Google Scholar
  99. Pohlert, T. (2016). The pairwise multiple comparison of mean ranks package (PMCMR). Resource document. Retrieved July 26, 2017, from https://cran.r-project.org/web/packages/PMCMR/vignettes/PMCMR.pdf.
  100. Quyet, L. K., Duc, N. A., Tai, V. A., Wright, B. W., & Covert, H. H. (2007). Diet of the Tonkin snub-nosed monkey (Rhinopithecus avunculus) in the Khau Ca area, Ha Giang Province, northeastern Vietnam. Vietnamese Journal of Primatology, 1, 75–83.Google Scholar
  101. Raadsheer, M. C., Van Eijden, T., Van Ginkel, F. C., & Prahl-Andersen, B. (1999). Contribution of jaw muscle size and craniofacial morphology to human bite force magnitude. Journal of Dental Research, 78, 31–42.PubMedGoogle Scholar
  102. Raia, P., & Meiri, S. (2006). The island rule in large mammals: Paleontology meets ecology. Evolution, 60, 1731–1742.PubMedGoogle Scholar
  103. Ravosa, M. J. (1990). Functional assessment of subfamily variation in maxillomandibular morphology among Old World monkeys. American Journal of Physical Anthropology, 82, 199–212.PubMedGoogle Scholar
  104. Ravosa, M. J. (1996). Jaw morphology and function in living and fossil Old World monkeys. International Journal of Primatology, 17, 909–932.Google Scholar
  105. Ravosa, M. J., Noble, V. E., Hylander, W. L., Johnson, K. R., & Kowalski, E. M. (2000). Masticatory stress, orbital orientation and the evolution of the primate postorbital bar. Journal of Human Evolution, 38, 667–693.PubMedGoogle Scholar
  106. Rawson, B. (2009). The socio-ecology of the black-shanked douc (Pygathrix nigripes) in Mondulkiri Province. Ph.D. thesis, The Australian National University.Google Scholar
  107. R-Core-Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Resource document. Retrieved July 26, 2017, from http://www.R-project.org/.
  108. Renaud, S., Dufour, A., Hardouin, E. A., & Ledevin, R. (2015). Once upon multivariate analyses: When they tell several stories about biological evolution. PLoS ONE, 10, 1–18.Google Scholar
  109. Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223.  https://doi.org/10.1111/j.2041-210X.2011.00169.x.Google Scholar
  110. Rilling, J. K., & a Seligman, R. (2002). A quantitative morphometric comparative analysis of the primate temporal lobe. Journal of Human Evolution, 42, 505–533.PubMedGoogle Scholar
  111. Rode, K. D., Chapman, C. A., Chapman, L. J., & McDowell, L. R. (2003). Mineral resource availability and consumption by colobus in Kibale national park, Uganda. International Journal of Primatology, 24, 541–573.Google Scholar
  112. Rohlf, F. J., & Corti, M. (2000). Use of two-block partial least-squares to study covariation in shape. Systematic Biology, 49, 740–753.PubMedGoogle Scholar
  113. Rohlf, F. J., & Slice, D. (1990). Extensions of the procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39, 40–59.Google Scholar
  114. Roos, C., Nadler, T., & Walter, L. (2008). Mitochondrial phylogeny, taxonomy and biogeography of the silvered langur species group (Trachypithecus cristatus). Molecular Phylogenetics and Evolution, 47, 629–636.PubMedGoogle Scholar
  115. Ruhiyat, Y. (1983). Socio-ecological study of Presbytis aygula in West Java. Primates, 24, 344–359.Google Scholar
  116. Schlager, S. (2013). Package ‘Morpho’. Resource document. Retrieved July 26, 2017, from https://cran.r-project.org/web/packages/Morpho/Morpho.pdf.
  117. Scott, R. S., Teaford, M. F., & Ungar, P. S. (2012). Dental microwear texture and anthropoid diets. American Journal of Physical Anthropology, 147, 551–579.PubMedGoogle Scholar
  118. Simberloff, D., Dayan, T., Jones, C., & Ogura, G. (2000). Character displacement and release in the small Indian mongoose, Herpestes javanicus. Ecology, 81, 2086–2099.Google Scholar
  119. Sinclair, A. R. E., Mduma, S., & Brashares, J. S. (2003). Patterns of predation in a diverse predator–prey system. Nature, 425, 288–290.PubMedGoogle Scholar
  120. Singleton, M. (2002). Patterns of cranial shape variation in the Papionini (Primates: Cercopithecinae). Journal of Human Evolution, 42, 547–578.PubMedGoogle Scholar
  121. Singleton, M. (2005). Functional shape variation in the cercopithecine masticatory complex. In D. E. Slice (Ed.), Modern morphometrics in physical anthropology (pp. 319–348). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  122. Snaith, T. V., & Chapman, C. A. (2008). Red colobus monkeys display alternative behavioral responses to the costs of scramble competition. Behavioral Ecology, 19, 1289–1296.Google Scholar
  123. Sokal, R. R., & Rohlf, F. J. (2012) Biometry (4th ed.). New York: WH Freeman and Company.Google Scholar
  124. Sondaar, P. Y. (1977). Insularity and its effect on mammal evolution. In M. K. Hecht, P. C. Goody & B. M. Hecht (Eds.), Major patterns in vertebrate evolution (pp. 671–707). New York: Plenum.Google Scholar
  125. Spencer, M. A., & Demes, B. (1993). Biomechanical analysis of masticatory system configuration in Neandertals and Inuits. American Journal of Physical Anthropology, 91, 1–20.PubMedGoogle Scholar
  126. Stanford, C. B. (1991). The diet of the capped langur (Presbytis pileata) in a moist deciduous forest in Bangladesh. International Journal of Primatology, 12, 199–216.Google Scholar
  127. Steudel, K. (1982). Patterns of intraspecific and interspecific allometry in Old World primates. American Journal of Physical Anthropology, 59, 419–430.PubMedGoogle Scholar
  128. Starin, E. D. (1991). Socioecology of the red colobus monkey in the Gambia with partial reference to female-male differences and transfer patterns. Ph.D. thesis, City University of New York, New York.Google Scholar
  129. Struhsaker, T. T. (1975). The red colobus monkey. Chicago: University of Chicago Press.Google Scholar
  130. Sunderraj, S. F. W. (2001). Ecology and conservation of Nilgiri langur (Trachypithecus johnii). Envis Bulletin: Wildlife and Protected Areas, 1, 49–59.Google Scholar
  131. Swindler, D. R. (1976). Dentition of living primates. London: Academic Press.Google Scholar
  132. Taylor, A. B., & Vinyard, C. J. (2009). Jaw-muscle fiber architecture in tufted capuchins favors generating relatively large muscle forces without compromising jaw gape. Journal of Human Evolution, 57, 710–720.PubMedPubMedCentralGoogle Scholar
  133. Teaford, M. F. (1983). The morphology and wear of the lingual notch in macaques and langurs. American Journal of Physical Anthropology, 60, 7–14.PubMedGoogle Scholar
  134. Teichroeb, J. A., Saj, T. L., Paterson, J. D., & Sicotte, P. (2003). Effect of group size on activity budgets of Colobus vellerosus in Ghana. International Journal of Primatology, 24, 743–758.Google Scholar
  135. Ting, N. (2008). Mitochondrial relationships and divergence dates of the African colobines: Evidence of Miocene origins for the living colobus monkeys. Journal of Human Evolution, 55, 312–325.PubMedGoogle Scholar
  136. Ting, N., Tosi, A. J., Li, Y., Zhang, Y.-P., & Disotell, T. R. (2008). Phylogenetic incongruence between nuclear and mitochondrial markers in the Asian colobines and the evolution of the langurs and leaf monkeys. Molecular phylogenetics and evolution, 46, 466–474.PubMedGoogle Scholar
  137. Ungar, P. (1998). Dental allometry, morphology, and wear as evidence for diet in fossil primates. Evolutionary Anthropology, 6, 205–217.Google Scholar
  138. Vandercone, R. P., Dinadh, C., Wijethunga, G., Ranawana, K., & Rasmussen, D. T. (2012). Dietary diversity and food selection in Hanuman langurs (Semnopithecus entellus) and purple-faced langurs (Trachypithecus vetulus) in the Kaludiyapokuna Forest Reserve in the dry zone of Sri Lanka. International Journal of Primatology, 33, 1382–1405.Google Scholar
  139. Van Valen, L. (1973). Pattern and the balance of nature. Evolutionary Theory, 1, 31–49.Google Scholar
  140. Verheyen, W. N. (1962) Contribution à la craniologie comparée des primates: les genres Colobus Illiger 1811 et Cercopithecus Linné 1758. Musée royal de l’Afrique centrale.Google Scholar
  141. Wang, B., Zhou, X., Shi, F., Liu, Z., Roos, C., Garber, P. A., Li, M., & Pan, H. (2015). Full-length Numt analysis provides evidence for hybridization between the Asian colobine genera Trachypithecus and Semnopithecus. American Journal of Primatology, 77, 901–910.PubMedGoogle Scholar
  142. Watanabe, K. (1981). Variations in group composition and population density of the two sympatric Mentawaian leaf-monkeys. Primates, 22, 145–160.Google Scholar
  143. Waterman, P. G., & Kool, K. M. (1994). Colobine food selection and plant chemistry. In A. G. Davies & J. F. Oates (Eds.), Colobine monkeys: Their ecology, behaviour and evolution (pp. 251–284). Cambridge: Cambridge University Press.Google Scholar
  144. Williams, S. H., Wright, B. W., Truong, V., Daubert, C. R., & Vinyard, C. J. (2005). Mechanical properties of foods used in experimental studies of primate masticatory function. American Journal of Primatology, 67, 329–346.PubMedGoogle Scholar
  145. Wright, B. W. (2005). Craniodental biomechanics and dietary toughness in the genus Cebus. Journal of Human Evolution, 48, 473–492.PubMedGoogle Scholar
  146. Wright, B. W., Ulibarri, L., O’brien, J., Sadler, B., Prodhan, R., Covert, H. H., & Nadler, T. (2008). It’s tough out there: Variation in the toughness of ingested leaves and feeding behavior among four Colobinae in Vietnam. International Journal of Primatology, 29, 1455–1466.Google Scholar
  147. Wright, B. W., & Willis, M. S. (2012). Relationships between the diet and dentition of Asian leaf monkeys. American Journal of Physical Anthropology, 148, 262–275.PubMedGoogle Scholar
  148. Yamashita, N., Cuozzo, F. P., Sauther, M. L., Fitzgerald, E., Riemenschneider, A., & Ungar, P. S. (2016). Mechanical food properties and dental topography differentiate three populations of Lemur catta in southwest Madagascar. Journal of Human Evolution, 98, 66–75.PubMedGoogle Scholar
  149. Yan-Zhang, P., Ru-Liang, P., & Jablonski, N. G. (1993). Classification and evolution of Asian colobines. Folia Primatologica, 60, 106–117.Google Scholar
  150. Zhou, Q., Wei, F., Li, M., Huang, C., & Luo, B. (2006). Diet and food choice of Trachypithecus francoisi in the Nonggang Nature Reserve, China. International Journal of Primatology, 27, 1441–1460.Google Scholar
  151. Zollikofer, C. P. E., & Ponce de León, M. S. (2010). The evolution of hominin ontogenies. Seminars in Cell & Developmental Biology, 21, 441–452.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UMR5199 PACEA, Université de Bordeaux, Allée Geoffroy Saint HilairePessacFrance
  2. 2.Department of Humanities and SciencesMusashino Art UniversityKodairaJapan

Personalised recommendations