Advertisement

On the Typology of Relations

  • Evgeny V. Mavrodiev
  • David M. Williams
  • Malte C. Ebach
Synthesis Paper

Abstract

The possibility of undertaking matrix/optimization-free cladistic analysis is one of the most interesting ideas to emerge in the last few decades from within the field of systematics, particularly in the development of cladistics. The purpose of this paper is to design further opportunities and prospects made possible by eliminating the matrix as the primary source of data representation. The main focus of this paper is to outline a supertree approach that, if combined with the methodology of three-taxon statement analysis (3TA), may be seen as a powerful heuristic alternative to the application of conventional matrix/optimization-based methods used for the analysis of systematic data, and which currently forms the mainstream of contemporary phylogenetics. Using the average consensus technique as an example, we demonstrate explicitly that methods of construction of supertrees may be applied to the array of three-taxon statements (3TS), especially if the latter are represented initially as minimal trees, not as binary matrices, as was originally proposed. The 3TA-average consensus procedure recognizes solely ‘reversal’-based clades and is also free from the potential issues of 3TA, such as the data distortion due to inability to handle putative reversals. Thus the main benefit of this new approach over the traditional one is its accuracy and advantages when implementing the Hennigian views on the cladistic analysis that states that all characters must be a priori polarized before the best fitting tree is found. We also found that the average consensus technique (as well as other median supertree calculation techniques) is purely typological and we stressed that this simple point had never been mentioned before. We proposed that the average consensus of 3TSs (as well as any median consensus of 3TSs) may be viewed as a median type and the extended procedure of the traditional 3TA may be treated as a typology of the relations. The connection between median type and phylogeny may be established only indirectly. The heuristic scientific typology may be derived within a completely metaphysics-free context. Goethe’s idea of “Urphenomenon” and Max Weber’s “Ideal Types” are mentioned as examples of heuristic metaphysical-free typological frameworks.

Keywords

Average consensus method Median supertrees Matrix-free Cladistics Three-taxon statement Three-taxon statement analysis 

Notes

Acknowledgements

The authors wish to thank Prof. Michel Laurin (CNRS/MNHN/UPMC, Sorbonne Universités, Paris, France), Dr. Valentin Rineau (CNRS/MNHN/UPMC, Sorbonne Universités, Paris, France) and an anonymous reviewer for their helpful comments and suggestions.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aguirre-Fernández, G., Barnes, L. G., Aranda-Manteca, F. J., & Fernández-Rivera, J. R. (2009). Protoglobicephala mexicana, a new genus and species of Pliocene fossil dolphin (Cetacea; Odontoceti; Delphinidae) from the Gulf of California. Boletín de la Sociedad Geológica Mexicana, 61(2), 245–265.CrossRefGoogle Scholar
  2. Ax, P. (1987). The phylogenetic system. The systematization of organisms on the basis of their phylogenesis. Chichester: Wiley.Google Scholar
  3. Baum, B. R. (1992). Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon, 41(1), 3–10.CrossRefGoogle Scholar
  4. Bininda-Emonds, O. R. (2014). An introduction to supertree construction (and partitioned phylogenetic analyses) with a view toward the distinction between gene trees and species trees. In L. Z. Garamszegi (Ed.), Modern phylogenetic comparative methods and their application in evolutionary biology (pp. 49–76). Berlin: Springer.CrossRefGoogle Scholar
  5. Bininda-Emonds, O. R. P. (2004). The evolution of supertrees. Trends in Ecology & Evolution, 19(6), 315–322.CrossRefGoogle Scholar
  6. Brady, R. H. (1982). Theoretical issues and “pattern cladists”. Systematic Zoology, 31(3), 286–291.CrossRefGoogle Scholar
  7. Brady, R. H. (1985). On the independence of systematics. Cladistics, 1(2), 113–126.CrossRefGoogle Scholar
  8. Brower, A. V. Z. (2015). Transformational and taxic homology revisited. Cladistics, 31(2), 197–201.CrossRefGoogle Scholar
  9. Bruen, T. C., & Bryant, D. (2008). Parsimony via consensus. Systematic Biology, 57(2), 251–256.PubMedCrossRefGoogle Scholar
  10. Bruun, H. H. (2001). Weber on Rickert: From value relation to ideal type. Max Weber Studies, 1(2), 138–160.Google Scholar
  11. Burger, T. (1978). Max Weber’s theory of concept formation: History, laws and ideal types. Duran: Duke University Press.Google Scholar
  12. Cantino, P. D., & de Queiroz, K. (2010). PhyloCode: A phylogenetic code of biological nomenclature. Version 4c.Google Scholar
  13. Cao, N., Zaraguëta-Bagils, R., & Vignes-Lebbe, R. (2007). Hierarchical representation of hypotheses of homology. Geodiversitas, 29(1), 5–15.Google Scholar
  14. Carine, M. A., & Scotland, R. W. (1999). Taxic and transformational homology: Different ways of seeing. Cladistics, 15, 121–129.Google Scholar
  15. Carpenter, J. C. (1987). Cladistics of cladists. Cladistics, 3(4), 363–375.CrossRefGoogle Scholar
  16. Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540–552.PubMedCrossRefGoogle Scholar
  17. Chen, D., Eulenstein, O., & Fernandez-Baca, D. (2004). Rainbow: A toolbox for phylogenetic supertree construction and analysis. Bioinformatics, 20(16), 2872–2873.PubMedCrossRefGoogle Scholar
  18. Cotton, J. A., & Page, R. D. M. (2004). Tangled trees from molecular markers: Reconciling conflict between phylogenies to build molecular supertrees. In O. R. P. Bininda-Emonds (Ed.), Phylogenetic supertrees: Combining information to reveal the tree of life (pp. 107–125). Dordrecht: Springer.CrossRefGoogle Scholar
  19. Creevey, C. (2004). Clann: Construction of supertrees and exploration of phylogenomic information from partially overlapping datasets (version 3.0.0), user manual. 3.0 ed. Manchester, Great Britan: The lab of James McInerney. http://chriscreevey.github.io/clann/.
  20. Creevey, C. J., & McInerney, J. O. (2009). Trees from trees: Construction of phylogenetic supertrees using Clann. In D. Posada (Ed.), Bioinformatics for DNA Sequence Analysis, (pp. 139–161). Humana Press-Springer-Nature, Switzerland.CrossRefGoogle Scholar
  21. Desper, R., & Gascuel, O. (2002). Fast and accurate phylogeny reconstruction algorithms based on the minimum evolution principle. Journal of Computational Biology, 9(5), 687–705.PubMedCrossRefGoogle Scholar
  22. Ebach, M. C. (2005). Anschauung and the Archetype: The role of Goethe’s delicate empiricism in comparative biology. Janus Head, 8(1), 254–270.Google Scholar
  23. Ebach, M. C. (2017). “Mehr Licht!” Anschauung and its fading role in Morphology. In: J. F. G. Toni, R. Richter, & P. Schilperoord (Eds.), Evolving morphology (pp. 22–37). Dornach.Google Scholar
  24. Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Eldredge, N., & Cracraft, J. (1980). Phylogenetic patterns and the evolutionary process. New York: Columbia University Press.Google Scholar
  26. Farris, J. S. (1997). Cycles. Cladistics, 13(1–2), 131–144.Google Scholar
  27. Farris, J. S., & Kluge, A. G. (1998). A/the brief history of three–taxon analysis. Cladistics, 14(4), 349–362.CrossRefGoogle Scholar
  28. Felsenstein, J. (1989). PHYLIP – phylogeny inference package (Version 3.2). Cladistics, 5(2), 164–166.Google Scholar
  29. Felsenstein, J. (2004). Inferring phylogenies (2nd ed.). Sunderland: Sinauer Associates, Inc.Google Scholar
  30. Goloboff, P. A., & Pol, D. (2002). Semi-strict supertrees. Cladistics, 18(5), 514–525.CrossRefGoogle Scholar
  31. Goremykin, V. V., Nikiforova, S. V., Biggs, P. J., Zhong, B., Delange, P., Martin, W., et al. (2013). The evolutionary root of flowering plants.. Systematic Biology, 62(1), 50–61.PubMedCrossRefGoogle Scholar
  32. Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView Version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27(2), 221–224.PubMedCrossRefGoogle Scholar
  33. Grand, A., Corvez, A., Duque Velez, L. M., & Laurin, M. (2013). Phylogenetic inference using discrete characters: Performance of ordered and unordered parsimony and of three-item statements. Biological Journal of the Linnean Society, 110(4), 914–930.CrossRefGoogle Scholar
  34. Heincke, F. (1898). Naturgeschichte des Herings. Teil I. Die Lokalformen und die Wanderungen des Heringes in den europaischen Meeren. In Abhandlungen des Deutschen Seefischerei-Vereins (Bd. II). Berlin: Verlag von Otto Sale. https://babel.hathitrust.org/cgi/pt?id=chi.23758345;view=1up;seq=7.
  35. Hennig, W. (1966). Phylogenetic systematics (D. Davis, & R. Zangerl, Trans.). Urbana: University of Illinois Press.Google Scholar
  36. Hobbs, C. R., & Baldwin, B. G. (2013). Asian origin and upslope migration of Hawaiian Artemisia (Compositae-Anthemideae). Journal of Biogeography, 40(3), 442–454.CrossRefGoogle Scholar
  37. Kitching, I. J., Forey, P. L., Humphries, C. J., & Williams, D. M. (1998). Cladistics: The theory and practice of parsimony analysis (Vol. 11, 2nd ed.). Oxford: Systematics Association Publication.Google Scholar
  38. Kluge, A. G. (1994). Moving targets and shell games. Cladistics, 10(4), 403–413.CrossRefGoogle Scholar
  39. Kluge, A. G., & Farris, J. S. (1999). Taxic homology equals overall similarity. Cladistics, 15(2), 205–212.Google Scholar
  40. Kuo, L.-Y., Qi, X., Ma, H., & Li, F.-W. (2018). Order-level fern plastome phylogenomics: New insights from Hymenophyllales. American Journal of Botany, 105, 1545–1555.PubMedCrossRefGoogle Scholar
  41. Lapointe, F. J., & Cucumel, G. (1997). The average consensus procedure: Combination of weighted trees containing identical or overlapping sets of taxa. Systematic Biology, 46(2), 306–312.CrossRefGoogle Scholar
  42. Lapointe, F. J., & Levasseur, C. (2004). Everything you always wanted to know about the average consensus, and more. In O. R. P. Bininda-Emonds (Ed.), Phylogenetic supertrees: Combining information to reveal the tree of life (pp. 87–105). Dordrecht: Springer.CrossRefGoogle Scholar
  43. Lapointe, F. J., Wilkinson, M., & Bryant, D. (2003). Matrix representations with parsimony or with distances: Two sides of the same coin? Systematic Biology, 52(6), 865–868.PubMedGoogle Scholar
  44. Laurin, M., de Queiroz, K., Cantino, P. D., Cellinese, N., & Olmstead, R. (2005). The PhyloCode, types, ranks, and monophyly: A response to Pickett. Cladistics, 21(5), 605–607.CrossRefGoogle Scholar
  45. Maddison, W. P., & Maddison, D. R. (2011). Mesquite: A modular system for evolutionary analysis. Version 3.01. Retrieved from http://mesquiteproject.org/.
  46. Mavrodiev, E. V. (2015). Three-taxon analysis can always successfully recognize groups based on putative reversals. PeerJ PrePrints, 3, e1206.  https://doi.org/10.7287/peerj.preprints.979v1.CrossRefGoogle Scholar
  47. Mavrodiev, E. V. (2016). Dealing with propositions, not with the characters: The ability of three-taxon statement analysis to recognize groups based solely on ‘reversals’, under the maximum-likelihood criteria. Australian Systematic Botany, 29(2), 119–125.CrossRefGoogle Scholar
  48. Mavrodiev, E. V., Dell, C., & Schroder, L. (2017). A laid-back trip through the Hennigian forests. PeerJ, 5, e3578,  https://doi.org/10.7717/peerj.3578.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mavrodiev, E. V., & Madorsky, A. (2012). TAXODIUM Version 1.0: A simple way to generate uniform and fractionally weighted three-item matrices from various kinds of biological data. PLoS ONE, 7(11), e48813.  https://doi.org/10.1371/journal.pone.0048813.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mavrodiev, E. V., Martinez-Azorin, M., Dranishnikov, P., & Crespo, M. B. (2014). At least 23 genera instead of one: The case of Iris L. s.l. (Iridaceae). PLoS ONE 9(8), e106459.  https://doi.org/10.1371/journal.pone.0106459.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mavrodiev, E. V., & Yurtseva, O. V. (2017). “A character does not make a genus, but the genus makes the character”: Three-taxon statement analysis and intuitive taxonomy. European Journal of Taxonomy, 377, 1–7.Google Scholar
  52. Mikoleit, G. (2004). Phylogenetische Systematik der Wirbeltiere. Pfeil, Dr. Friedrich.Google Scholar
  53. Nelson, G. (1989). Cladistics and evolutionary models. Cladistics, 5(3), 275–289.CrossRefGoogle Scholar
  54. Nelson, G. 1996. Nullius in verba. New York, Self-published.Google Scholar
  55. Nelson, G. (2004). Cladistics: Its arrested development. In D. M. Williams, & P. L. Forey (Eds.), Milestones in systematics (pp. 127–148). Boca Raton: CRC Press.CrossRefGoogle Scholar
  56. Nelson, G., & Ladiges, P. Y. (1994). Three-item consensus: Empirical test of fractional weighting. In R. W. Scotland, D. J. Siebert, & D. M. Williams (Eds.), Models in phylogeny reconstruction (Systematics Association, special volume series) (Vol. 52, pp. 193–209). Oxford: Oxford University Press.Google Scholar
  57. Nelson, G., & Ladiges, P. Y. (1992). Information-content and fractional weight of 3-item statements. Systematic Biology, 41(4), 490–494.CrossRefGoogle Scholar
  58. Nelson, G., & Platnick, N. (1981). Systematics and biogeography: Cladistics and vicariance. New York: Columbia University Press.Google Scholar
  59. Nelson, G., & Platnick, N. I. (1991). Three-taxon statements—A more precise use of parsimony? Cladistics, 7(4), 351–366.CrossRefGoogle Scholar
  60. Nelson, G. J. (1970). Outline of a theory of comparative biology. Systematic Zoology, 19(4), 373–384.PubMedCrossRefGoogle Scholar
  61. Patterson, C. (1980). Cladistics. Biologist, 27, 234–240.Google Scholar
  62. Platnick, N. I. (1979). Philosophy and the transformation of cladistics. Systematic Zoology, 28(4), 537–546.CrossRefGoogle Scholar
  63. Platnick, N. I. (1993). Character optimization and weighting—Differences between the standard and three-taxon approaches to phylogenetic inference. Cladistics, 9(2), 267–272.CrossRefGoogle Scholar
  64. Platnick, N. I. (2012). The poverty of the PhyloCode: A reply to de Queiroz and Donoghue. Systematic Biology, 61(2), 360–361.PubMedCrossRefGoogle Scholar
  65. Platnick, N. I., Humphries, C. J., Nelson, G., & Williams, D. M. (1996). Is Farris optimization perfect?: Three-taxon statements and multiple branching. Cladistics, 12(3), 243–252.CrossRefGoogle Scholar
  66. Powers, J. (2013). Finding Ernst Mayr’s Plato. Studies in History and Philosophy of Biological and Biomedical Sciences, 44(4B), 714–723.PubMedCrossRefGoogle Scholar
  67. Ragan, M. A. (1992). Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution, 1(1), 53–58.PubMedCrossRefGoogle Scholar
  68. Rambaut, A. (2012). FigTree Version. 1.4.3. Molecular evolution, phylogenetics and epidemiology. Edinburgh, UK. University of Edinburgh, Institute of Evolutionary Biology. Retrieved from http://tree.bio.ed.ac.uk/software/figtree/.
  69. Ranwez, V., Criscuolo, A., & Douzery, E. J. P. (2010). SuperTriplets: A triplet-based supertree approach to phylogenomics. Bioinformatics, 26(12), i115–i123.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Remane, A. (1952). Grundlagen des Natürlichen Systems, der Vergleichenden Anatomie und der Phylogenetik. Theoretische Morphologie und Systematik. Leipzig: Akademische Verlagsgesellschaft Geert & Portig.Google Scholar
  71. Rieppel, O. (2007). The metaphysics of Henning’s phylogenetic systematics: Substance, events and laws of nature. Systematics and Biodiversity, 5(4), 345–360.CrossRefGoogle Scholar
  72. Rieppel, O. (2013). Styles of scientific reasoning: Adolf Remane (1898–1976) and the German evolutionary synthesis. Journal of Zoological Systematics and Evolutionary Research, 51, 1–12.CrossRefGoogle Scholar
  73. Rieppel, O., Williams, D. M., & Ebach, M. C. (2013). Adolf Naef (1883–1949): On foundational concepts and principles of systematic morphology. Journal of the History of Biology, 46(3), 445–510.PubMedCrossRefGoogle Scholar
  74. Rineau, V., Grand, A., Zaraguëta-Bagils, R., & Laurin, M. (2015). Experimental systematics: Sensitivity of cladistic methods to polarization and character ordering schemes. Contributions to Zoology, 84(2), 129–148.Google Scholar
  75. Rineau, V., Zaraguëta-Bagils, R., & Laurin, M. (2018). Impact of errors on cladistic inference: Simulation-based comparison between parsimony and three-taxon analysis. Contributions to Zoology, 87(1), 25–40.Google Scholar
  76. Schmitt, M. (2016a). Hennig, Ax, and present-day mainstream cladistics on polarizing characters. Peckiana, 11, 35–42.Google Scholar
  77. Schmitt, M. (2016b). How much of Hennig is in present day cladistics? In D. M. Williams, M. Schmitt, & Q. Wheeler (Eds.), The future of phylogenetic systematics: The legacy of Willi Hennig (Systematics Association, special volume series) (Vol. 86, pp. 115–127). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  78. Siebert, D. J., & Williams, D. M. (1998). Recycled. Cladistics, 14(4), 339–347.CrossRefGoogle Scholar
  79. Smirnov, E. (1925). The theory of type and natural system. Zeitschrift fuer Induktive Abstammungs und Vererbungslehre (Berlin), 37, 28–66.Google Scholar
  80. Sokal, R. R. (1962). Typology and empiricism in taxonomy. Journal of Theoretical Biology, 3(2), 230–267.CrossRefGoogle Scholar
  81. Sokal, R. R., & Sneath, P. H. A. (1963). Principles of numerical taxonomy. San Francisco: W. H. Freeman.Google Scholar
  82. Stevens, P. F. (1983). Report of third annual Willi Hennig Society meeting. Systematic Zoology, 32(3), 285–291.Google Scholar
  83. Swofford, D. L. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0. Sunderland: Sinauer Associates.Google Scholar
  84. Thorley, J. L., & Wilkinson, M. (2003). A view of supertree methods. In Janowitz, M. E. et al. (Eds.), Bioconsensus: DIMACS Working Group Meetings on Bioconsensus: October 25–26, 2000 and October 2–5, 2001, DIMACS Center, vol. 61 (pp. 185–194). American Mathematical Society.Google Scholar
  85. Tremblay, F. (2013). Nicolai Hartmann and the metaphysical foundation of phylogenetic systematics. Biology Theory, 7(1), 56–68.CrossRefGoogle Scholar
  86. Waegele, J. W. (2005). Foundations of phylogenetic systematics. München: Pfeil Verlag.Google Scholar
  87. Watkins, J. W. (1952). Ideal types and historical explanation. The British Journal for the Philosophy of Science, 3(9), 22–43.CrossRefGoogle Scholar
  88. Weberling, F. (1999). Wilhelm Troll, his work and influence. Systematics and Geography of Plants, 68, 9–24.CrossRefGoogle Scholar
  89. Wheeler, W. (1996). Optimization alignment: The end of multiple sequence alignment in phylogenetics? Cladistics, 12(1), 1–9.CrossRefGoogle Scholar
  90. Wiesemüller, B., Rothe, H., & Hencke, W. (2003). Phylogenetische Systematik: Eine Einführung. Berlin: Springer.CrossRefGoogle Scholar
  91. Wiley, E. O., & Lieberman, B. S. (2011). Phylogenetics: The theory and practice of phylogenetic systematics (2nd ed.). Hoboken: WileyCrossRefGoogle Scholar
  92. Wilkinson, M., Cotton, J. A., Creevey, C., Eulenstein, O., Harris, S. R., Lapointe, F. J., et al. (2005a). The shape of supertrees to come: Tree shape related properties of fourteen supertree methods. Systematic Biology, 54(3), 419–431.PubMedCrossRefGoogle Scholar
  93. Wilkinson, M., Cotton, J. A., & Thorley, J. L. (2004). The information content of trees and their matrix representations. Systematic Biology, 53, 989–1001.PubMedCrossRefGoogle Scholar
  94. Wilkinson, M., Pisani, D., Cotton, J. A., & Corfe, I. (2005b). Measuring support and finding unsupported relationships in supertrees. Systematic Biology, 54(5), 823–831.PubMedCrossRefGoogle Scholar
  95. Williams, D. M. (1994). Combining trees and combining data. Taxon, 43(3), 449–453.CrossRefGoogle Scholar
  96. Williams, D. M. (1996). Characters and cladograms. Taxon, 45(2), 275–283.CrossRefGoogle Scholar
  97. Williams, D. M. (2002). Precision and parsimony. Taxon, 51(1), 143–149.CrossRefGoogle Scholar
  98. Williams, D. M. (2004). Supertrees, components and three-item data. In O. R. P. Bininda-Emonds (Ed.), Phylogenetic supertrees: Combining information to reveal the tree of life (pp. 389–408). Dordrecht: Springer.CrossRefGoogle Scholar
  99. Williams, D. M., & Ebach, M. C. (2005). Drowning by numbers: Rereading Nelson’s “Nullius in Verba”. Botanical Review, 71, 415–447.CrossRefGoogle Scholar
  100. Williams, D. M., & Ebach, M. C. (2006). The data matrix. Geodiversitas, 28(3), 409–420.Google Scholar
  101. Williams, D. M., & Ebach, M. C. (2008). Foundations of systematics and biogeography. New York: Springer.CrossRefGoogle Scholar
  102. Williams, D. M., & Siebert, D. J. (2000). Characters, homology and three-item analysis. In R. W. Scotland & R. T. Pennington (Eds.), Homology and systematics: Coding characters for phylogenetic analysis (Systematics Association, special volume series) (Vol. 58, pp. 183–208). Chapman and Hall: Taylor and Francis.Google Scholar
  103. Winsor, M. P. (2006a). Linnaeus’s biology was not essentialist. Annals of the Missouri Botanical Garden, 93(1), 2–7.CrossRefGoogle Scholar
  104. Winsor, M. P. (2006b). The creation of the essentialism story: An exercise in metahistory. History and Philosophy of the Life Sciences, 28(2), 149–174.PubMedGoogle Scholar
  105. Witteveen, J. (2015a). “A temporary oversimplification”: Mayr, Simpson, Dobzhansky, and the origins of the typology/population dichotomy (part 1 of 2). Studies in History and Philosophy of Biological and Biomedical Sciences, 54, 20–33.PubMedCrossRefGoogle Scholar
  106. Witteveen, J. (2015b). Naming and contingency: The type method of biological taxonomy. Biology & Philosophy, 30(4), 569–586.CrossRefGoogle Scholar
  107. Witteveen, J. (2016). “A temporary oversimplification”: Mayr, Simpson, Dobzhansky, and the origins of the typology/population dichotomy (part 2 of 2). Studies in History and Philosophy of Biological and Biomedical Sciences, 57, 96–105.PubMedCrossRefGoogle Scholar
  108. Yurtseva, O. V., Severova, E. E., & Mavrodiev, E. V. (2017). Persepolium (Polygoneae): A new genus in Polygonaceae based on conventional maximum parsimony and three-taxon statement analyses of a comprehensive morphological dataset. Phytotaxa, 314(2), 151–194.CrossRefGoogle Scholar
  109. Zaraguëta-Bagils, R., Ung, V., Grand, A., Vignes-Lebbe, R., Cao, N., & Ducasse, J. (2012). LisBeth: New cladistics for phylogenetics and biogeography. Comptes Rendus Palevol, 11(8), 563–566.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Evgeny V. Mavrodiev
    • 1
  • David M. Williams
    • 2
  • Malte C. Ebach
    • 3
  1. 1.Florida Museum of Natural HistoryUniversity of FloridaGainesvilleUSA
  2. 2.Department of Life Sciencesthe Natural History MuseumLondonUK
  3. 3.Palaeontology, Geobiology and Earth Archives Research Centre, School of Biological, Earth and Environmental SciencesUNSWKensingtonAustralia

Personalised recommendations