Advertisement

Larger Numbers Can Impede Adaptation in Asexual Populations despite Entailing Greater Genetic Variation

  • Yashraj D. Chavhan
  • Sayyad Irfan Ali
  • Sutirth DeyEmail author
Research Article
  • 31 Downloads

Abstract

Periodic bottlenecks play a major role in shaping the adaptive dynamics of natural and laboratory populations of asexual microbes. Here we study how they affect the ‘Extent of Adaptation’ (EoA), in such populations. EoA, the average fitness gain relative to the ancestor, is the quantity of interest in a large number of microbial experimental-evolution studies which assume that for any given bottleneck size (N0) and number of generations between bottlenecks (g), the harmonic mean size (HM = N0g) will predict the ensuing evolutionary dynamics. However, there are no theoretical or empirical validations for HM being a good predictor of EoA. Using experimental-evolution with Escherichia coli and individual-based simulations, we show that HM fails to predict EoA (i.e., higher N0g does not lead to higher EoA). This is because although higher g allows populations to arrive at superior benefits by entailing increased variation, it also reduces the efficacy of selection, which lowers EoA. We show that EoA can be maximized in evolution experiments by either maximizing N0 and/or minimizing g. We also conjecture that N0/g is a better predictor of EoA than N0g. Our results call for a re-evaluation of the role of population size in predicting fitness trajectories. They also aid in predicting adaptation in asexual populations, which has important evolutionary, epidemiological and economic implications.

Keywords

Population size Experimental evolution Extent of adaptation Population bottlenecks Adaptive size 

Notes

Acknowledgements

We thank Milind Watve, M.S. Madhusudhan, Shraddha Karve and Sachit Daniel for their invaluable suggestions and insightful discussions. We thank Amitabh Joshi for critical comments on an earlier draft of the manuscript. Y.D.C. was supported by a Senior Research Fellowship, initially sponsored by the Indian Institute of Science Education and Research, Pune, and later by the Council for Scientific and Industrial Research (CSIR), Government of India. S.I.A. thanks the Department of Science and Technology (DST), Government of India for financial support through a KVPY fellowship. This project was supported by an external grant from Department of Biotechnology, Government of India and internal funding from Indian Institute of Science Education and Research, Pune.

Funding

This study was funded by Department of Biotechnology, Ministry of Science and Technology (Grant No. BT/PR5655/BRB/10/1088/2012).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11692_2018_9467_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1858 KB)

References

  1. Abdi, H. (2010). Holm’s sequential Bonferroni procedure. In Salkind, N. (Ed.), Encyclopedia of research design, 1–8.  https://doi.org/10.4135/9781412961288.n178
  2. Abel, S., Abel zur Wiesch, P., Davis, B. M., & Waldor, M. K. (2015). Analysis of bottlenecks in experimental models of infection. PLoS Pathogens, 11(6), e1004823.  https://doi.org/10.1371/journal.ppat.1004823.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barrick, J. E., Yu, D. S., Yoon, S. H., Jeong, H., Oh, T. K., Schneider, D., et al. (2009). Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature, 461(7268), 1243–1247.  https://doi.org/10.1038/nature08480.CrossRefPubMedGoogle Scholar
  4. Campos, P. R. A., & Wahl, L. M. (2009). The effects of population bottlenecks on clonal interference, and the adaptation effective population size. Evolution, 63(4), 950–958.  https://doi.org/10.1111/j.1558-5646.2008.00595.x.CrossRefPubMedGoogle Scholar
  5. Campos, P. R. A., & Wahl, L. M. (2010). The adaptation rate of asexuals: Deleterious mutations, clonal interference and population bottlenecks. Evolution, 64(7), 1973–1983.  https://doi.org/10.1111/j.1558-5646.2010.00981.x.CrossRefPubMedGoogle Scholar
  6. Charlesworth, B. (2009). Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics, 10(3), 195–205.CrossRefGoogle Scholar
  7. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  8. Crow, J. F. (1958). Some possibilities for measuring selection intensities in man. Human Biology, 30(1), 1–13.PubMedGoogle Scholar
  9. De Visser, J. A. G. M., & Rozen, D. E. (2005). Limits to adaptation in asexual populations. Journal of Evolutionary Biology, 18(4), 779–788.  https://doi.org/10.1111/j.1420-9101.2005.00879.x.CrossRefPubMedGoogle Scholar
  10. Desai, M. M., & Fisher, D. S. (2007). Beneficial mutation-selection balance and the effect of linkage on positive selection. Genetics, 176(3), 1759–1798.CrossRefGoogle Scholar
  11. Desai, M. M., Fisher, D. S., & Murray, A. W. (2007). The speed of evolution and maintenance of variation in asexual populations. Current Biology, 17(5), 385–394.  https://doi.org/10.1016/j.cub.2007.01.072.CrossRefPubMedGoogle Scholar
  12. Elena, S. F., Cooper, V. S., & Lenski, R. E. (1996). Punctuated evolution caused by selection of rare beneficial mutations. Science, 272(5269), 1802–1804.  https://doi.org/10.1126/science.272.5269.1802.CrossRefPubMedGoogle Scholar
  13. Eyre-Walker, A., & Keightley, P. D. (2007). The distribution of fitness effects of new mutations. Nature Reviews Genetics, 8(8), 610–618.  https://doi.org/10.1038/nrg2146.
  14. Gerrish, P. J., & Lenski, R. E. (1998). The fate of competing beneficial mutations in an asexual population. Genetica, 102–103(0), 127–144.  https://doi.org/10.1023/A:1017067816551.CrossRefPubMedGoogle Scholar
  15. Heffernan, J. M., & Wahl, L. M. (2002). The effects of genetic drift in experimental evolution. Theoretical Population Biology, 62(4), 349–356.  https://doi.org/10.1016/S0040-5809(02)00002-3.CrossRefPubMedGoogle Scholar
  16. Karve, S. M., Bhave, D., Nevgi, D., & Dey, S. (2016). Escherichia coli populations adapt to complex, unpredictable fluctuations by minimizing trade-offs across environments. Journal of Evolutionary Biology, 29(12), 2545–2555.  https://doi.org/10.1111/jeb.12972.CrossRefPubMedGoogle Scholar
  17. Karve, S. M., Daniel, S., Chavhan, Y. D., Anand, A., Kharola, S. S., & Dey, S. (2015). Escherichia coli populations in unpredictably fluctuating environments evolve to face novel stresses through enhanced efflux activity. Journal of Evolutionary Biology, 28(5), 1131–1143.  https://doi.org/10.1111/jeb.12640.CrossRefPubMedGoogle Scholar
  18. Kassen, R. (2014). Experimental evolution and the nature of biodiversity. Greenwood Village, CO: Roberts and Company.Google Scholar
  19. Kassen, R., & Bataillon, T. (2006). Distribution of fitness effects among beneficial mutations before selection in experimental populations of bacteria. Nature genetics, 38(4), 484–488.  https://doi.org/10.1038/ng1751.CrossRefPubMedGoogle Scholar
  20. Katju, V., Packard, L. B., Bu, L., Keightley, P. D., & Bergthorsson, U. (2015). Fitness decline in spontaneous mutation accumulation lines of Caenorhabditis elegans with varying effective population sizes. Evolution; International Journal of Organic Evolution, 69(1), 104–116.  https://doi.org/10.1111/evo.12554.CrossRefPubMedGoogle Scholar
  21. Kawecki, T. J., Lenski, R. E., Ebert, D., Hollis, B., Olivieri, I., & Whitlock, M. C. (2012). Experimental evolution. Trends in Ecology & Evolution, 27(10), 547–560.  https://doi.org/10.1016/j.tree.2012.06.001.CrossRefGoogle Scholar
  22. Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  23. LaBar, T., & Adami, C. (2016). Different evolutionary paths to complexity for small and large populations of digital organisms. PLoS Computational Biology, 12(12), e1005066.  https://doi.org/10.1371/journal.pcbi.1005066.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lachapelle, J., Reid, J., & Colegrave, N. (2015). Repeatability of adaptation in experimental populations of different sizes. Proceedings of the Royal Society of London B: Biological Sciences, 282(1805), 20143033.  https://doi.org/10.1098/rspb.2014.3033.CrossRefGoogle Scholar
  25. Lanfear, R., Kokko, H., & Eyre-Walker, A. (2014). Population size and the rate of evolution. Trends in Ecology & Evolution, 29(1), 33–41.  https://doi.org/10.1016/j.tree.2013.09.009.CrossRefGoogle Scholar
  26. Lenski, R. E., Rose, M. R., Simpson, S. C., & Tadler, S. C. (1991). Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. The American Naturalist, 138(6), 1315–1341.CrossRefGoogle Scholar
  27. Luria, S. E., & Delbrück, M. (1943). Mutations of bacteria from virus sensitivity to virus resistance. Genetics, 28(6), 491–511.PubMedPubMedCentralGoogle Scholar
  28. Novak, M., Pfeiffer, T., Lenski, R. E., Sauer, U., & Bonhoeffer, S. (2006). Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli. The American Naturalist, 168(2), 242–251.  https://doi.org/10.1086/an.2006.168.issue-2.CrossRefPubMedGoogle Scholar
  29. Orr, H. A. (2000). The rate of adaptation in asexuals. Genetics, 155(2), 961–968.PubMedPubMedCentralGoogle Scholar
  30. Patwa, Z., & Wahl, L. (2008). The fixation probability of beneficial mutations. Journal of the Royal Society Interface, 5(28), 1279–1289.  https://doi.org/10.1098/rsif.2008.0248.CrossRefPubMedCentralGoogle Scholar
  31. Petit, N., & Barbadilla, A. (2009). Selection efficiency and effective population size in Drosophila species. Journal of Evolutionary Biology, 22(3), 515–526.  https://doi.org/10.1111/j.1420-9101.2008.01672.x.CrossRefPubMedGoogle Scholar
  32. Ramsayer, J., Kaltz, O., & Hochberg, M. E. (2013). Evolutionary rescue in populations of Pseudomonas fluorescens across an antibiotic gradient. Evolutionary Applications, 6(4), 608–616.  https://doi.org/10.1111/eva.12046.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Raynes, Y., Gazzara, M. R., & Sniegowski, P. D. (2012). Contrasting dynamics of a mutator allele in asexual populations of differing size. Evolution, 66(7), 2329–2334.  https://doi.org/10.1111/j.1558-5646.2011.01577.x.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Raynes, Y., Halstead, A. L., & Sniegowski, P. D. (2014). The effect of population bottlenecks on mutation rate evolution in asexual populations. Journal of Evolutionary Biology, 27(1), 161–169.  https://doi.org/10.1111/jeb.12284.CrossRefPubMedGoogle Scholar
  35. Rice, S. H. (2004). Evolutionary theory: Mathematical and conceptual foundations. Sunderland: Sinauer Associates.Google Scholar
  36. Rozen, D. E., de Visser, J. A. G. M., & Gerrish, P. J. (2002). Fitness effects of fixed beneficial mutations in microbial populations. Current Biology, 12(12), 1040–1045.  https://doi.org/10.1016/S0960-9822(02)00896-5.CrossRefPubMedGoogle Scholar
  37. Rozen, D. E., Habets, M. G. J. L., Handel, A., & de Visser, J. A. G. M. (2008). Heterogeneous adaptive trajectories of small populations on complex fitness landscapes. PLoS ONE, 3(3), e1715.  https://doi.org/10.1371/journal.pone.0001715.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Samani, P., & Bell, G. (2010). Adaptation of experimental yeast populations to stressful conditions in relation to population size. Journal of Evolutionary Biology, 23(4), 791–796.  https://doi.org/10.1111/j.1420-9101.2010.01945.x.CrossRefPubMedGoogle Scholar
  39. Sniegowski, P. D., & Gerrish, P. J. (2010). Beneficial mutations and the dynamics of adaptation in asexual populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1544), 1255–1263.  https://doi.org/10.1098/rstb.2009.0290.CrossRefGoogle Scholar
  40. Szendro, I. G., Franke, J., de Visser, J. A. G. M., & Krug, J. (2013). Predictability of evolution depends nonmonotonically on population size. Proceedings of the National Academy of Sciences, 110(2), 571–576.  https://doi.org/10.1073/pnas.1213613110.CrossRefGoogle Scholar
  41. Tenaillon, O., Barrick, J. E., Ribeck, N., Deatherage, D. E., Blanchard, J. L., Dasgupta, A., et al. (2016). Tempo and mode of genome evolution in a 50,000-generation experiment. Nature, 535, 165.CrossRefGoogle Scholar
  42. Vogwill, T., Phillips, R. L., & Gifford, D. R. (2016). Divergent evolution peaks under intermediate population bottlenecks during bacterial experimental evolution. Proceedings of the Royal Society B: Biological Sciences, 283(1835), 20160749.  https://doi.org/10.1098/rspb.2016.0749.CrossRefPubMedGoogle Scholar
  43. Wahl, L. M., & Gerrish, P. J. (2001). The probability that beneficial mutations are lost in populations with periodic bottlenecks. Evolution, 55(12), 2606–2610.  https://doi.org/10.1111/j.0014-3820.2001.tb00772.x.CrossRefPubMedGoogle Scholar
  44. Wahl, L. M., Gerrish, P. J., & Saika-Voivod, I. (2002). Evaluating the impact of population bottlenecks in experimental evolution. Genetics, 162(2), 961–971.PubMedPubMedCentralGoogle Scholar
  45. Wahl, L. M., & Zhu, A. D. (2015). Survival probability of beneficial mutations in bacterial batch culture. Genetics, 200(1), 309–320.  https://doi.org/10.1534/genetics.114.172890.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wang, J., Santiago, E., & Caballero, A. (2016). Prediction and estimation of effective population size. Heredity, 117(4), 193–206.  https://doi.org/10.1038/hdy.2016.43.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wilke, C. O. (2004). The speed of adaptation in large asexual populations. Genetics, 167(4), 2045–2053.  https://doi.org/10.1534/genetics.104.027136.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Indian Institute of Science Education and Research (IISER) PunePuneIndia
  2. 2.BhilaiIndia

Personalised recommendations