Advertisement

Evolutionary Biology

, Volume 45, Issue 4, pp 437–448 | Cite as

Study of Natural Genetic Variation in Early Fitness Traits Reveals Decoupling Between Larval and Pupal Developmental Time in Drosophila melanogaster

  • M. A. Petino Zappala
  • V. E. Ortiz
  • J. J. Fanara
Research Article

Abstract

Characterizing the relationships between genotype and phenotype for developmental adaptive traits is essential to understand the evolutionary dynamics underlying biodiversity. In holometabolous insects, the time to reach the reproductive stage and pupation site preference are two such traits. Here we characterize aspects of the genetic architecture for Developmental Time (decomposed in Larval and Pupal components) and Pupation Height using lines derived from three natural populations of Drosophila melanogaster raised at two temperatures. For all traits, phenotypic differences and variation in plasticity between populations suggest adaptation to the original thermal regimes. However, high variability within populations shows that selection does not exhaust genetic variance for these traits. This could be partly explained by local adaptation, environmental heterogeneity and modifications in the genetic architecture of traits according to environment and ontogenetic stage. Indeed, our results show that the genetic factors affecting Developmental Time and Pupation Height are temperature-specific. Varying relationships between Larval and Pupal Developmental Time between and within populations also suggest stage-specific modifications of genetic architecture for this trait. This flexibility would allow for a somewhat independent evolution of adaptive traits at different environments and life stages, favoring the maintenance of genetic variability and thus sustaining the traits’ evolvabilities.

Keywords

Developmental time Pupation height Genetic variation Phenotypic plasticity Ontogenetic decoupling 

Notes

Acknowledgements

This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (FONCyT, PICT) and Consejo Nacional de Ciencia y Técnica (CONICET). MAPZ and VEO are recipients of doctoral scholarships from CONICET (Argentina) and JJF is a member of Carrera del Investigador Cientifico of CONICET (Argentina).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Angilletta, M., Steury, T., & Sears, M. (2004). Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life-history puzzle. Integrative and Comparative Biology, 44, 498–509.PubMedGoogle Scholar
  2. Arbeitman, M. N., Furlong, E. E., Imam, F., Johnson, E., Null, B. H., et al. (2002). Gene expression during the life cycle of Drosophila melanogaster. Science, 297, 2270–2275.PubMedGoogle Scholar
  3. Artieri, C. G., & Singh, R. S. (2010). Molecular evidence for increased regulatory conservation during metamorphosis, and against deleterious cascading effects of hybrid breakdown in Drosophila. BMC Biology, 8, 26.PubMedPubMedCentralGoogle Scholar
  4. Atchley, W. R., Gaskins, C. T., & Anderson, D. (1976). Statistical properties of ratios. I. Empirical results. Systematic Biology, 25, 137–148.Google Scholar
  5. Bauer, S. J., & Sokolowski, M. B. (1985). A genetic analysis of path length and pupation height in a natural population of Drosophila melanogaster. Canadian Journal of Genetics and Cytology, 27, 334–340.Google Scholar
  6. Beltramí, M., Medina-Muñoz, M. C., Arce, D., & Godoy-Herrera, R. (2010). Drosophila pupation behavior in the wild. Evolutionary Ecology, 24, 347–358.Google Scholar
  7. Bharathi, N. S., Prasad, N. G., Shakarad, M., & Joshi, A. (2004). Correlates of sexual dimorphism for dry weight and development time in five species of Drosophila. Journal of Zoology, 264, 87–95.Google Scholar
  8. Bryant, E. H. (1969). A system favoring evolution of holometabolous development. Annals of the Entomological Society of America, 62, 1087–1091.Google Scholar
  9. Bürger, R., & Gimelfarb, A. (2002). Fluctuating environments and the role of mutation in maintaining quantitative genetic variation. Genetics Research, 80, 31–46.Google Scholar
  10. Carreira, V. P., Imberti, M., Mensch, J., & Fanara, J. J. (2013). Gene-by-temperature interactions and candidate plasticity genes for morphological traits in Drosophila melanogaster. PLoS ONE, 8(7), e70851.PubMedPubMedCentralGoogle Scholar
  11. Casares, P., & Carracedo, M. C. (1987). Pupation height in Drosophila: Sex differences and influence of larval developmental time. Behavior Genetics, 17, 523–535.PubMedGoogle Scholar
  12. Chippindale, A. K., Alipaz, J. A., Chen, H. W., & Rose, M. R. (1997). Experimental evolution of accelerated development in Drosophila. 1. Developmental speed and larval survival. Evolution, 51(5), 1536–1551.PubMedGoogle Scholar
  13. Chippindale, A. K., Alipaz, J. A., & Rose, M. R. (2004). Experimental Evolution of accelerated development in Drosophila. 2. Adult fitness and the fast development syndrome. In M. R. Rose, H. B. Passananti & M. Matos (eds.), Methuselah flies: A case study in the evolution of aging (pp. 413–435). Singapore: World Scientific Press.Google Scholar
  14. Chippindale, A. K., Ngo, A. L., & Rose, M. R. (2003). The devil in the details of life-history evolution: Instability and reversal of genetic correlations during selection on Drosophila development. Journal of Genetics, 82, 133–145.PubMedGoogle Scholar
  15. Conner, J. C., & Hartl, D. L. (2004). A primer of ecological genetics. Sunderland: Sinauer Associates Incorporated.Google Scholar
  16. Davidowitz, G., & Nijhout, H. F. (2004). The physiological basis of reaction norms: The interaction between growth rate, the duration of growth and body size. Integrative and Comparative Biology, 44, 443–449.PubMedGoogle Scholar
  17. Del Pino, F., Jara, C., Pino, L., & Godoy-Herrera, R. (2014). The neuro-ecology of Drosophila pupation behavior. PLoS ONE, 9(7), e102159.PubMedPubMedCentralGoogle Scholar
  18. Del Pino, F., Salgado, E., & Godoy-Herrera, R. (2012). Plasticity and genotype x environment interactions for locomotion of Drosophila melanogaster larvae. Behavior Genetics, 42, 162–169.PubMedGoogle Scholar
  19. DeWitt, J., & Scheiner, S. M. (2004). Phenotypic plasticity: Functional and conceptual approaches. Oxford: Oxford University Press.Google Scholar
  20. Dillon, M., Wang, G., Garrity, P. A., & Huey, R. B. (2009). Thermal preference in Drosophila. Journal of Thermal Biology, 34, 109–119.PubMedPubMedCentralGoogle Scholar
  21. Ebenman, B. (1987). Niche differences between age classes and intraspecific competition in age-structured populations. Journal of Theoretical Biology, 124, 25–33.Google Scholar
  22. Edgar, B. A. (2006). How flies get their size: Genetics meets physiology. Nature Reviews Genetics, 7, 907–916.PubMedGoogle Scholar
  23. Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Essex: Longman.Google Scholar
  24. Fallis, L. C., Fanara, J. J., & Morgan, T. J. (2014). Developmental thermal plasticity among Drosophila melanogaster populations. Journal of Evolutionary Biology, 27, 557–564.PubMedGoogle Scholar
  25. Fanara, J. J., Folguera, G., Fernandez Iriarte, P., Mensch, J., & Hasson, E. (2006). Genotype by environment interactions in viability and developmental time in populations of cactophilic Drosophila. Journal of Evolutionary Biology, 19, 900–906.PubMedGoogle Scholar
  26. Fanara, J. J., & Hasson, E. (2001). Oviposition acceptance and fecundity schedule in the cactophilic sibling species Drosophila buzzatii. and D. koepferae on their natural hosts. Evolution, 55, 2615–2619.PubMedGoogle Scholar
  27. Flatt, T. (2005). The evolutionary genetics of canalization. The Quarterly Review of Biology, 80, 287–316.PubMedGoogle Scholar
  28. Flatt, T., & Heyland, A. (2011). Mechanisms of life history evolution: The genetics and physiology of life history traits and trade-offs. Oxford: Oxford University Press.Google Scholar
  29. Folguera, G., Mensch, J., Muñoz, J. L., Ceballos, S. G., Hasson, E., & Bozinovic, F. (2010). Ontogenetic stage-dependent effect of temperature on developmental and metabolic rates in a holometabolous insect. Journal of Insect Physiology, 56, 1679–1684.PubMedGoogle Scholar
  30. Gerstein, M. B., Rozowsky, J., Yan, K. K., Wang, D., Cheng, C., et al. (2014). Comparative analysis of the transcriptome across distant species. Nature, 512, 445–448.PubMedPubMedCentralGoogle Scholar
  31. Gilchrist, G. W., Jeffers, L. M., West, B., Folk, D. G., Suess, J., & Huey, R. B. (2008). Clinal patterns of desiccation and starvation resistance in ancestral and invading populations of Drosophila subobscura. Evolutionary Applications, 1, 513–523.PubMedPubMedCentralGoogle Scholar
  32. Goldstein, D. B., & Pollock, D. D. (1997). Launching microsatellites: A review of mutation processes and methods of phylogenetic inference. Journal of Heredity, 88, 335–342.PubMedGoogle Scholar
  33. Hansen, T. F. (2006). The evolution of genetic architecture. Annual Review of Ecology, Evolution, and Systematics, 37, 123–157.Google Scholar
  34. Houle, D. (1992). Comparing evolvability and variability of quantitative traits. Genetics, 130, 195–204.PubMedPubMedCentralGoogle Scholar
  35. Huang, W., Massouras, A., Inoue, Y., Peiffer, J., Ràmia, M., et al. (2014). Natural variation in genome architecture among 205 Drosophila melanogaster genetic reference panel lines. Genome Research, 24, 1193–1208.PubMedPubMedCentralGoogle Scholar
  36. Jumbo-Lucioni, P., Ayroles, J. F., Chambers, M. M., Jordan, K. W., Leips, J., Mackay, T. F., & De Luca, M. (2010). Systems genetics analysis of body weight and energy metabolism traits in Drosophila melanogaster. BMC Genomics, 11, 297.PubMedPubMedCentralGoogle Scholar
  37. Kingsolver, J. G., & Huey, R. B. (2008). Size, temperature, and fitness: Three rules. Evolutionary Ecology Research, 10, 251–268.Google Scholar
  38. Lavagnino, N., Anholt, R. R. H., & Fanara, J. J. (2008). Variation in genetic architecture of olfactory behavior among wild-derived populations of Drosophila melanogaster. Journal of Evolutionary Biology, 21, 988–996.PubMedGoogle Scholar
  39. Lavagnino, N., & Fanara, J. J. (2016). Changes across development influence visible and cryptic natural variation of Drosophila melanogaster olfactory response. Evolutionary Biology, 43, 96–108.Google Scholar
  40. Long, T. A. F., Pischedda, A., Stewart, A. D., & Rice, W. R. (2009). A cost of sexual attractiveness to high-fitness females. PLoS Biology, 7(12), e1000254.PubMedPubMedCentralGoogle Scholar
  41. Lynch, M., & Walsh, B. (1998). Genetics and analysis of quantitative traits (p. 663). Sunderland: Sinauer Associates, Inc.Google Scholar
  42. Mackay, T. F. C. (2001). The genetic architecture of quantitative traits. Annual Review of Genetics, 35, 303–339.PubMedGoogle Scholar
  43. Mackay, T. F. C., Richards, S., Stone, E. A., Barbadilla, A., Ayroles, J. F., et al. (2012). The Drosophila melanogaster genetic reference panel. Nature, 482, 173–178.PubMedPubMedCentralGoogle Scholar
  44. Markow, T. A. (1979). A survey of intra- and interspecific variation for pupation height in Drosophila. Behavior Genetics, 9, 209–217.PubMedGoogle Scholar
  45. Matzkin, L. M., Watts, T. D., & Markow, T. A. (2007). Desiccation resistance in four Drosophila species: Sex and population effects. Fly, 1, 268–273.PubMedGoogle Scholar
  46. McMahon, D. P., & Hayward, A. (2016). Why grow up? A perspective on insect strategies to avoid metamorphosis. Ecological Entomology, 41, 505–515.Google Scholar
  47. Melo, D., Porto, A., Cheverud, J. M., & Marroig, G. (2016). Modularity: Genes, development, and evolution. Annual Review of Ecology, Evolution, and Systematics, 47, 463–486.PubMedPubMedCentralGoogle Scholar
  48. Mensch, J., Carreira, V. P., Lavagnino, N., Goenaga, J., Folguera, G., Hasson, E., & Fanara, J. J. (2010). State-specifics effects of candidate heterochronic genes on variation in developmental time along an altitudinal cline of Drosophila melanogaster. PLoS ONE, 5(6), e11229.PubMedPubMedCentralGoogle Scholar
  49. Mensch, J., Lavagnino, N., Carreira, V. P., Massaldi, A., Hasson, E., & Fanara, J. J. (2008). Identifying candidate genes affecting developmental time in Drosophila melanogaster: Pervasive pleiotropy and gene-by-environment interaction. BMC Developmental Biology, 8, 78.PubMedPubMedCentralGoogle Scholar
  50. Minelli, A., Brena, C., Deflorian, G., Maruzzo, D., & Fusco, G. (2006). From embryo to adult—beyond the conventional periodization of arthropod development. Development Genes and Evolution, 216, 373–383.PubMedGoogle Scholar
  51. Minelli, A., & Fusco, G. (2010). Developmental plasticity and the evolution of animal complex life cycles. Philosophical Transactions of the Royal Society B, 365, 631–640.Google Scholar
  52. Mirth, C. K., & Riddiford, L. M. (2007). Size assessment and growth control: How adult size is determined in insects. Bioessays, 29, 344–355.PubMedGoogle Scholar
  53. Moran, N. (1994). Adaptation and constraint in the complex life cycles of animals. Annual Review of Ecology and Systematics, 25, 573–600.Google Scholar
  54. Mousseau, T. A., & Roff, D. A. (1987). Natural selection and the heritability of fitness components. Heredity, 59, 181–197.PubMedGoogle Scholar
  55. Mueller, L. D., & Sweet, V. F. (1986). Density-dependent natural selection in Drosophila: Evolution of pupation height. Evolution, 40, 1354–1356.PubMedGoogle Scholar
  56. Narasimha, S., Kolly, S., Sokolowski, M. B., Kawecki, T. J., & Vijendravarma, R. K. (2015). Prepupal building behavior in Drosophila melanogaster and its evolution under resource and time constraints. PLoS ONE, 10, e0117280.PubMedPubMedCentralGoogle Scholar
  57. Nunney, L. (1996). The response to selection for fast larval development in Drosophila melanogaster and its effect on adult weight: An example of a fitness trade-off. Evolution, 50, 1193–1204.PubMedGoogle Scholar
  58. Nunney, L. (2007). Pupal period and adult size in Drosophila melanogaster: A cautionary tale of contrasting correlations between two sexually dimorphic traits. Journal of Evolutionary Biology, 20, 141–151.PubMedGoogle Scholar
  59. Nylin, S., & Gotthard, K. (1998). Plasticity in life-history traits. Annual Review of Entomology, 43, 63–83.PubMedGoogle Scholar
  60. Paranjpe, D. A., Anitha, D., Chandrashekaran, M. K., Joshi, A., & Sharma, V. K. (2005). Possible role of eclosion rhythm in mediating the effects of light-dark environments on pre-adult development in Drosophila melanogaster. BMC Developmental Biology, 5, 5.PubMedPubMedCentralGoogle Scholar
  61. Partridge, L., Barrie, B., Fowler, K., & French, V. (1994). Thermal evolution of pre-adult life history traits in Drosophila melanogaster. Journal of Evolutionary Biology, 7, 645–663.Google Scholar
  62. Partridge, L., & Fowler, K. (1992). Direct and correlated response to selection on age at reproduction in Drosophila melanogaster. Evolution, 46, 76–91.PubMedGoogle Scholar
  63. Prasad, N. G., Shakarad, M., Anitha, D., Rajamani, M., & Joshi, A. (2001). Correlated responses to selection for faster development and early reproduction in Drosophila: The evolution of larval traits. Evolution, 55, 1363–1372.PubMedGoogle Scholar
  64. Rewitz, K. F., Yamanaka, N., & O’Connor, M. B. (2013). Chapter one—Developmental checkpoints and feedback circuits time insect maturation. Current Topics in Developmental Biology, 103, 1–33.PubMedPubMedCentralGoogle Scholar
  65. Riedl, C. A., Riedl, M., Mackay, T. F., & Sokolowski, M. B. (2007). Genetic and behavioral analysis of natural variation in Drosophila melanogaster pupation position. Fly, 1, 23–32.PubMedGoogle Scholar
  66. Rodrigues, M. A., Martins, N. E., Balancé, L. F., Broom, L. N., Dias, A. J., Fernandes, A. S. D., Rodrigues, F., Sucena, E., & Mirth, C. K. (2015). Drosophila melanogaster larvae make nutritional choices that minimize developmental time. Journal of Insect Physiology, 81, 69–80.PubMedGoogle Scholar
  67. Roff, D. A. (1992). The evolution of life histories: Theory and analysis. New York: Chapman & Hall.Google Scholar
  68. Sasaki, A., & Ellner, S. (1997). Quantitative genetic variance maintained by fluctuating selection with overlapping generations: Variance components and covariances. Evolution, 51, 682–696.PubMedGoogle Scholar
  69. Schlichting, C., & Pigliucci, M. (1998). Phenotypic evolution: A reaction norm perspective. Sunderland: Sinauer Associates Incorporated.Google Scholar
  70. Shingleton, A. W., Das, J., Vinicius, L., & Stern, D. L. (2005). The temporal requirements for insulin signaling during development in Drosophila. PLoS Biology, 3(9), e289.PubMedPubMedCentralGoogle Scholar
  71. Singh, B. N., & Pandey, M. B. (1993). Evidence for additive polygenic control of pupation heigh in Drosophila ananassae. Hereditas, 119, 111–116.PubMedGoogle Scholar
  72. Sokolowski, M. B., & Hansell, R. I. (1983). Elucidating the behavioral phenotype of Drosophila melanogaster larvae: Correlations between larval foraging strategies and pupation height. Behavior Genetics, 13, 267–280.PubMedGoogle Scholar
  73. Stearns, S. C. (1989). Trade-offs in life-history evolution. Functional Ecology, 3, 259–268.Google Scholar
  74. Stearns, S. C. (1992). The evolution of life histories. Oxford: Oxford University Press.Google Scholar
  75. Trotta, V., Calboli, F. C., Ziosi, M., Guerra, D., Pezzoli, M. C., David, J. R., & Cavicchi, S. (2006). Thermal plasticity in Drosophila melanogaster: A comparison of geographic populations. BMC Evolutionary Biology, 6, 67.PubMedPubMedCentralGoogle Scholar
  76. Truman, J. W., & Riddiford, L. M. (1999). The origins of insect metamorphosis. Nature, 401, 447–452.PubMedGoogle Scholar
  77. van Noordwijk, A. J., & de Jong, G. (1986). Acquisition and allocation of resources: Their influence on variation in life history tactics. American Naturalist, 128, 137–142.Google Scholar
  78. Wagner, G. P., Booth, G., & Bagheri-Chaichian, H. (1997). A population genetic theory of canalization. Evolution, 51(2), 329–347.PubMedGoogle Scholar
  79. Welbergen, P., & Sokolowski, M. (1994). Development time and pupation behavior in the Drosophila melanogaster subgroup (Diptera: Drosophilidae). Journal of Insect Behavior, 7, 263–277.Google Scholar
  80. Werenkraut, V., Hasson, E., Oklander, L., & Fanara, J. J. (2008). A comparative study of competitive ability between two cactophilic species in their natural hosts. Austral Ecology, 33, 663–671.Google Scholar
  81. Yang, A. S. (2001). Modularity, evolvability, and adaptive radiations: A comparison of the hemi- and holometabolous insects. Evolution & Development, 3, 59–72.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ecologia, Genetica y Evolucion - IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations