Bite Force Performance, Fluctuating Asymmetry and Antisymmetry in the Mandible of Inbred and Outbred Wild-Derived Strains of Mice (Mus musculus domesticus)

Research Article
  • 16 Downloads

Abstract

Developmental instability, as measured by fluctuating asymmetry is generally considered to increase with genetic and environmental stresses. Few studies have, however, addressed the role of asymmetry in altering organism performance. Here, we measured bite force performance in three strains of inbred and outbred mice derived from wild ancestors. We quantified size and shape directional, and fluctuating asymmetry, as well as inter-individual variation of their mandibles using geometric morphometrics. We also developed a way to estimate shape antisymmetry, to filter it out of the fluctuating asymmetry component. Contrary to our expectations, we found no significant link between bite force and asymmetry levels. Inbreeding did not produce any clear and significant increase or decrease in neither inter-individual variance, nor fluctuating asymmetry. Furthermore, fluctuating asymmetry levels were unrelated to inter-individual variance levels, although these two types of variation affected the same areas of the mandible. We did not highlight any impact of inbreeding depression on bite force. Fluctuating asymmetry was reduced in the mandible, which we argue may be linked to its functional relevance. We found some significant but very reduced antisymmetry possibly linked to lateralization. This lateralization did not relate to any bite force difference. Our results show that neither inbreeding, nor asymmetry (combining fluctuating, directional asymmetry and antisymmetry) significantly affect bite force performance in mice, and that despite affecting the same morphological regions, developmental stability and canalization are independent.

Keywords

Asymmetry Performance Inbreeding Rodents Lateralization 

Notes

Acknowledgements

The authors thank Jean-Christophe Auffray, Annie Orth, Josette Catalan, Pascale Chevret, Lionel Hautier, who constituted the fieldwork team to the Orkney Archipelago, where the mice originally came from and Roohollah Siahsarvie who took care of the lab colony until 2014. We are also grateful to Sabrina Renaud for leading the project which allowed to start the colony, and for her important comments on the early versions of the manuscript. Finally, we thank one anonymous reviewer for suggesting several interesting ways to improve the manuscript. This publication is a contribution of the Institut des Sciences de l’Evolution de Montpellier (UMR 5554 – UM + CNRS + IRD) No. ISEM 2018-064. This study was supported by the ANR Project Bigtooth (ANR-11-BSV7-008).

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to declare.

Supplementary material

11692_2018_9450_MOESM1_ESM.eps (10 kb)
Supplementary material 1. Fig. 1 Shape asymmetry differences between sexes in the different groups of this study. (EPS 10 KB)
11692_2018_9450_MOESM2_ESM.xls (11 kb)
Supplementary material 2 (XLS 11 KB)

References

  1. Angel, E. H. (1900). Treatment of malocclusion of the teeth and fractures of the maxillae: Angle’s system. Philadelphia: SS White Dental Manufacturing Company.Google Scholar
  2. Armbruster, P., & Reed, D. H. (2005). Inbreeding depression in benign and stressful environments. Heredity, 95(3), 235–242.PubMedCrossRefGoogle Scholar
  3. Badyaev, A. V., Foresman, K. R., & Fernandez, M. V. (2000). Stress and developmental stability: Vegetation removal causes increased fluctuating asymmetry in shrews. Ecology, 81(2), 336–345.CrossRefGoogle Scholar
  4. Ballard, M. L. (1944). Asymmetry in tooth size: A factor in the etiology, diagnosis and treatment of malocclusion. The Angle Orthodontist, 14(3), 67–70.Google Scholar
  5. Boell, L., Gregorova, S., Forejt, J., & Tautz, D. (2011). A comparative assessment of mandible shape in a consomic strain panel of the house mouse (Mus musculus)—implications for epistasis and evolvability of quantitative traits. BMC Evolutionary Biology, 11(1), 309.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Breuker, C. J., Patterson, J. S., & Klingenberg, C. P. (2006). A single basis for developmental buffering of Drosophila wing shape. PLoS ONE, 1(1), e7.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Clarke, G. M. (1998). The genetic basis of developmental stability. V. Inter-and intra-individual character variation. Heredity, 80(5), 562–567.CrossRefGoogle Scholar
  8. Clarke, G. M., Brand, G. W., & Whitten, M. J. (1986). Fluctuating asymmetry: A technique for measuring developmental stress caused by inbreeding. Australian Journal of Biological Sciences, 39(2), 145–154.CrossRefGoogle Scholar
  9. Claude, J. (2008). Morphometrics with R. New York: Springer.Google Scholar
  10. Collins, R. L. (1991). Reimpressed selective breeding for lateralization of handedness in mice. Brain Research, 564(2), 194–202.PubMedCrossRefGoogle Scholar
  11. Collins, R. L., Sargent, E. E., & Neumann, P. E. (1993). Genetic and behavioral tests of the McManus hypothesis relating response to selection for lateralization of handedness in mice to degree of heterozygosity. Behavior Genetics, 23(4), 413–421.PubMedCrossRefGoogle Scholar
  12. Corti, M., & Rohlf, F. J. (2001). Chromosomal speciation and phenotypic evolution in the house mouse. Biological Journal of the Linnean Society, 73(1), 99–112.CrossRefGoogle Scholar
  13. Coster, A. (2013). Pedigree: Pedigree functions. R package version 1.4. https://CRAN.R-project.org/package=pedigree. Accessed Nov 2017.
  14. Davis, S. J. (1983). Morphometric variation of populations of house mice Mus domesticus in Britain and Faroe. Journal of Zoology, 199(4), 521–534.CrossRefGoogle Scholar
  15. Debat, V., Alibert, P., David, P., Paradis, E., & Auffray, J. C. (2000). Independence between developmental stability and canalization in the skull of the house mouse. Proceedings of the Royal Society of London B: Biological Sciences, 267(1442), 423–430.CrossRefGoogle Scholar
  16. Debat, V., Debelle, A., & Dworkin, I. (2009). Plasticity, canalization, and developmental stability of the Drosophila wing: Joint effects of mutations and developmental temperature. Evolution, 63(11), 2864–2876.PubMedCrossRefGoogle Scholar
  17. Fahlke, J. M., Gingerich, P. D., Welsh, R. C., & Wood, A. R. (2011). Cranial asymmetry in Eocene archaeocete whales and the evolution of directional hearing in water. Proceedings of the National Academy of Sciences, 108(35), 14545–14548.CrossRefGoogle Scholar
  18. Fowler, K., & Whitlock, M. C. (1999). The distribution of phenotypic variance with inbreeding. Evolution, 53(4), 1143–1156.PubMedCrossRefGoogle Scholar
  19. Freeman, P. W., & Lemen, C. A. (2008). A simple morphological predictor of bite force in rodents. Journal of Zoology, 275(4), 418–422.CrossRefGoogle Scholar
  20. Ginot, S., Claude, J., Perez, J., & Veyrunes, F. (2017). Sex-reversal induces size and performance differences among females of the African pygmy mouse Mus minutoides. Journal of Experimental Biology, 220(11), 1947–1951.PubMedCrossRefGoogle Scholar
  21. Gonzalez, P. N., Lotto, F. P., & Hallgrímsson, B. (2014). Canalization and developmental instability of the fetal skull in a mouse model of maternal nutritional stress. American Journal of Physical Anthropology, 154(4), 544–553.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Gonzalez, P. N., Pavlicev, M., Mitteroecker, P., Pardo-Manuel de Villena, F., Spritz, R. A., Marcucio, R. S., & Hallgrímsson, B. (2016). Genetic structure of phenotypic robustness in the collaborative cross mouse diallel panel. Journal of Evolutionary Biology, 29(9), 1737–1751.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Grammer, K., Fink, B., Moller, A. P., & Thornhill, R. (2003). Darwinian aesthetics: Sexual selection and the biology of beauty. Biological Reviews, 78, 385–407.PubMedCrossRefGoogle Scholar
  24. Hallgrímsson, B. (1998). Fluctuating asymmetry in the mammalian skeleton. In M.K. Hecht (Ed.), Evolutionary biology (pp. 187–251). Boston: Springer.Google Scholar
  25. Herrel, A., De Smet, A., Aguirre, L. F., & Aerts, P. (2008). Morphological and mechanical determinants of bite force in bats: Do muscles matter? Journal of Experimental Biology, 211(1), 86–91.PubMedCrossRefGoogle Scholar
  26. Herrel, A., Moore, J. A., Bredeweg, E. M., & Nelson, N. J. (2010). Sexual dimorphism, body size, bite force and male mating success in tuatara. Biological Journal of the Linnean Society, 100(2), 287–292.CrossRefGoogle Scholar
  27. Herrel, A., Podos, J., Huber, S. K., & Hendry, A. P. (2005). Bite performance and morphology in a population of Darwin’s finches: Implications for the evolution of beak shape. Functional Ecology, 19(1), 43–48.CrossRefGoogle Scholar
  28. Herrel, A., Spithoven, L., Van Damme, R., & De Vree, F. (1999). Sexual dimorphism of head size in Gallotia galloti: Testing the niche divergence hypothesis by functional analyses. Functional Ecology, 13(3), 289–297.CrossRefGoogle Scholar
  29. Husak, J. F., Kristopher Lappin, A., Fox, S. F., & Lemos-Espinal, J. A. (2006). Bite-force performance predicts dominance in male venerable collared lizards (Crotaphytus antiquus). Copeia, 2006(2), 301–306.CrossRefGoogle Scholar
  30. Hutchison, D. W., & Cheverud, J. M. (1995). Fluctuating asymmetry in tamarin (Saguinus) cranial morphology: Intra-and interspecific comparisons between taxa with varying levels of genetic heterozygosity. Journal of Heredity, 86(4), 280–288.PubMedCrossRefGoogle Scholar
  31. Kark, S. (2001). Shifts in bilateral asymmetry within a distribution range: The case of the chukar partridge. Evolution, 55(10), 2088–2096.PubMedCrossRefGoogle Scholar
  32. Klingenberg, C. P., Barluenga, M., & Meyer, A. (2002). Shape analysis of symmetric structures: Quantifying variation among individuals and asymmetry. Evolution, 56(10), 1909–1920.PubMedCrossRefGoogle Scholar
  33. Klingenberg, C. P., Leamy, L. J., & Cheverud, J. M. (2004). Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible. Genetics, 166(4), 1909–1921.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Klingenberg, C. P., & McIntyre, G. S. (1998). Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution, 52(5), 1363–1375.PubMedCrossRefGoogle Scholar
  35. Klingenberg, C. P., Mebus, K., & Auffray, J. C. (2003). Developmental integration in a complex morphological structure: How distinct are the modules in the mouse mandible? Evolution & Development, 5(5), 522–531.CrossRefGoogle Scholar
  36. Kobyliansky, E., & Livshits, G. (1989). Age-dependent changes in morphometric and biochemical traits. Annals of Human Biology, 16(3), 237–247.PubMedCrossRefGoogle Scholar
  37. Kruuk, L. E. B., Slate, J., Pemberton, J. M., & Clutton-Brock, T. H. (2003). Fluctuating asymmetry in a secondary sexual trait: No associations with individual fitness, environmental stress or inbreeding, and no heritability. Journal of Evolutionary Biology, 16(1), 101–113.PubMedCrossRefGoogle Scholar
  38. Lacy, R. C., & Honer, B. E. (1996). Effects of inbreeding on skeletal development of Rattus villosissimus. Journal of Heredity, 87(4), 277–287.PubMedCrossRefGoogle Scholar
  39. Leamy, L. J., Klingenberg, C. P., Sherratt, E., Wolf, J. B., & Cheverud, J. M. (2015). The genetic architecture of fluctuating asymmetry of mandible size and shape in a population of mice: Another look. Symmetry, 7(1), 146–163.CrossRefGoogle Scholar
  40. Lerner, I. M. (1954). Genetic homeostasis. Edinburgh: Oliver & Boyd.Google Scholar
  41. Levinton, J. S., Judge, M. L., & Kurdziel, J. P. (1995). Functional differences between the major and minor claws of fiddler crabs (Uca, family Ocypodidae, Order Decapoda, Subphylum Crustacea): A result of selection or developmental constraint? Journal of Experimental Marine Biology and Ecology, 193(1–2), 147–160.CrossRefGoogle Scholar
  42. Logue, S. F., Owen, E. H., Rasmussen, D. L., & Wehner, J. M. (1997). Assessment of locomotor activity, acoustic and tactile startle, and prepulse inhibition of startle in inbred mouse strains and F1 hybrids: Implications of genetic background for single gene and quantitative trait loci analyses. Neuroscience, 80(4), 1075–1086.PubMedCrossRefGoogle Scholar
  43. MacLeod, C. D., Reidenberg, J. S., Weller, M., Santos, M. B., Herman, J., Goold, J., & Pierce, G. J. (2007). Breaking symmetry: The marine environment, prey size, and the evolution of asymmetry in cetacean skulls. The Anatomical Record, 290(6), 539–545.PubMedCrossRefGoogle Scholar
  44. Martín, J., & López, P. (2001). Hindlimb asymmetry reduces escape performance in the lizard Psammodromus algirus. Physiological and Biochemical Zoology, 74(5), 619–624.PubMedCrossRefGoogle Scholar
  45. McCarroll, R. S., Naeije, M., & Hansson, T. L. (1989). Balance in masticatory muscle activity during natural chewing and submaximal clenching. Journal of Oral Rehabilitation, 16(5), 441–446.PubMedCrossRefGoogle Scholar
  46. Milton, C. C., Huynh, B., Batterham, P., Rutherford, S. L., & Hoffmann, A. A. (2003). Quantitative trait symmetry independent of Hsp90 buffering: Distinct modes of genetic canalization and developmental stability. Proceedings of the National Academy of Sciences, 100(23), 13396–13401.CrossRefGoogle Scholar
  47. Møller, A. P. (1994). Directional selection on directional asymmetry: Testes size and secondary sexual characters in birds. Proceedings of the Royal Society of London B: Biological Sciences, 258(1352), 147–151.CrossRefGoogle Scholar
  48. Møller, A. P., & Pomiankowski, A. (1993). Fluctuating asymmetry and sexual selection. Genetica, 89(1–3), 267.CrossRefGoogle Scholar
  49. Morgan, K. N., & Tromborg, C. T. (2007). Sources of stress in captivity. Applied Animal Behaviour Science, 102(3), 262–302.CrossRefGoogle Scholar
  50. Mousseau, T. A., & Roff, D. A. (1987). Natural selection and the heritability of fitness components. Heredity, 59(Pt 2), 181–197.PubMedCrossRefGoogle Scholar
  51. Naeije, M., McCarroll, R. S., & Weijs, W. A. (1989). Electromyographic activity of the human masticatory muscles during submaximal clenching in the inter-cuspal position. Journal of Oral Rehabilitation, 16(1), 63–70.PubMedCrossRefGoogle Scholar
  52. Nissan, J., Gross, M. D., Shifman, A., Tzadok, L., & Assif, D. (2004). Chewing side preference as a type of hemispheric laterality. Journal of Oral Rehabilitation, 31(5), 412–416.PubMedCrossRefGoogle Scholar
  53. Palmer, A. R. (1994). Fluctuating asymmetry analyses: A primer. In T. Markow (Ed.), Developmental instability: Its origins and evolutionary implications (pp. 335–364). Dordrecht: Springer.CrossRefGoogle Scholar
  54. Palmer, A. R. (1999). Detecting publication bias in meta-analyses: A case study of fluctuating asymmetry and sexual selection. The American Naturalist, 154(2), 220–233.PubMedGoogle Scholar
  55. Pirttiniemi, P. (1998). Normal and increased functional asymmetries in the craniofacial area. Acta Odontologica Scandinavica, 56(6), 342–345.PubMedCrossRefGoogle Scholar
  56. Pirttiniemi, P., & Kantomaa, T. (1992). Relation of glenoid fossa morphology to mandibulofacial asymmetry, studied in dry human Lapp skulls. Acta Odontologica Scandinavica, 50(4), 235–243.PubMedCrossRefGoogle Scholar
  57. R Core Team. (2017). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  58. Réale, D., & Roff, D. A. (2003). Inbreeding, developmental stability, and canalization in the sand cricket Gryllus firmus. Evolution, 57(3), 597–605.PubMedCrossRefGoogle Scholar
  59. Renaud, S. (2005). First upper molar and mandible shape of wood mice (Apodemus sylvaticus) from northern Germany: Ageing, habitat and insularity. Mammalian Biology-Zeitschrift für Säugetierkunde, 70(3), 157–170.CrossRefGoogle Scholar
  60. Renaud, S., Auffray, J.-C., & de La Porte, S. (2010). Epigenetic effects on the mouse mandible: Common features and discrepancies in remodeling due to muscular dystrophy and response to food consistency. BMC Evolutionary Biology, 10, 28.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Rivera, G., & Claude, J. (2008). Environmental media and shape asymmetry: A case study on turtle shells. Biological Journal of the Linnean Society, 94(3), 483–489.CrossRefGoogle Scholar
  62. Rohlf, F. J. (2010). tpsDig v2. 16. New York: Department of Ecology and Evolution, State University of New York, Stony Brook.Google Scholar
  63. Rovira-Lastra, B., Flores-Orozco, E. I., Salsench, J., Peraire, M., & Martinez-Gomis, J. (2014). Is the side with the best masticatory performance selected for chewing? Archives of Oral Biology, 59(12), 1316–1320.PubMedCrossRefGoogle Scholar
  64. Siegel, M. I., & Doyle, W. J. (1975). Stress and fluctuating limb asymmetry in various species of rodents. Growth, 39(3), 363–369.PubMedGoogle Scholar
  65. Sumner, F. B., & Huestis, R. R. (1921). Bilateral asymmetry and its relation to certain problems of genetics. Genetics, 6(5), 445.PubMedPubMedCentralGoogle Scholar
  66. Swaddle, J. P., & Witter, M. S. (1998). Cluttered habitats reduce wing asymmetry and increase flight performance in European starlings. Behavioral Ecology and Sociobiology, 42(4), 281–287.CrossRefGoogle Scholar
  67. Swaddle, J. P., Witter, M. S., & Cuthill, I. C. (1994). The analysis of fluctuating asymmetry. Animal Behaviour, 48(4), 986–989.CrossRefGoogle Scholar
  68. Tang, X., Orchard, S. M., & Sanford, L. D. (2002). Home cage activity and behavioral performance in inbred and hybrid mice. Behavioural Brain Research, 136(2), 555–569.PubMedCrossRefGoogle Scholar
  69. Valenzuela-Lamas, S., Baylac, M., Cucchi, T., & Vigne, J.-D. (2011). House mouse dispersal in Iron Age Spain: A geometric morphometrics appraisal. Biological Journal of the Linnean Society, 102, 483–497.CrossRefGoogle Scholar
  70. Van Dongen, S., Lens, L., & Molenberghs, G. (1999). Mixture analysis of asymmetry: Modelling directional asymmetry, antisymmetry and heterogeneity in fluctuating asymmetry. Ecology Letters, 2, 387–396.CrossRefGoogle Scholar
  71. Van Valen, L. (1962). A study of fluctuating asymmetry. Evolution, 16(2), 125–142.CrossRefGoogle Scholar
  72. Vervust, B., Van Dongen, S., Grbac, I., & Van Damme, R. (2008). Fluctuating asymmetry, physiological performance, and stress in island populations of the Italian Wall Lizard (Podarcis sicula). Journal of Herpetology, 42(2), 369–377.CrossRefGoogle Scholar
  73. Verwaijen, D., Van Damme, R., & Herrel, A. (2002). Relationships between head size, bite force, prey handling efficiency and diet in two sympatric lacertid lizards. Functional Ecology, 16(6), 842–850.CrossRefGoogle Scholar
  74. Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150(3811), 563–565.CrossRefGoogle Scholar
  75. Waddington, C. H. (1957). The strategy of the genes. A discussion of some aspects of theoretical biology. With an appendix by H. Kacser. London: George Allen & Unwin, Ltd.Google Scholar
  76. Weijs, W. A. (1975). Mandibular movements of the albino rat during feeding. Journal of Morphology, 145(1), 107–124.PubMedCrossRefGoogle Scholar
  77. Weijs, W. A., & Dantuma, R. (1975). Electromyography and mechanics of mastication in the albino rat. Journal of Morphology, 146(1), 1–33.PubMedCrossRefGoogle Scholar
  78. Woo, T. L. (1931). On the asymmetry of the human skull. Biometrika, 22, 324–352.CrossRefGoogle Scholar
  79. Zamanlu, M., Khamnei, S., SalariLak, S., Oskoee, S. S., Shakouri, S. K., Houshyar, Y., & Salekzamani, Y. (2012). Chewing side preference in first and all mastication cycles for hard and soft morsels. International Journal of Clinical and Experimental Medicine, 5(4), 326.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de Genetique Fonctionnelle de LyonENS LyonLyonFrance
  2. 2.Institut des Sciences de l’Evolution de MontpellierUniversite de Montpellier, CNRS, IRDMontpellier Cedex 5France

Personalised recommendations