Evolutionary Biology

, Volume 44, Issue 3, pp 339–346 | Cite as

Towards a Better Understanding of the Origins of Microlens Arrays in Mesozoic Ophiuroids and Asteroids

  • Przemysław Gorzelak
  • Imran A. Rahman
  • Samuel Zamora
  • Arkadiusz Gąsiński
  • Jerzy Trzciński
  • Tomasz Brachaniec
  • Mariusz A. Salamon
Research Article

Abstract

Echinoderms are characterized by a calcite endoskeleton with a unique microstructure, which is optimized for multiple functions. For instance, some light-sensitive ophiuroids (Ophiuroidea) and asteroids (Asteroidea) possess skeletal plates with multi-lens arrays that are thought to act as photosensory organs. The origins of these lens-like microstructures have long been unclear. It was recently proposed that the complex photosensory systems in certain modern ophiuroids and asteroids could be traced back to at least the Late Cretaceous (ca. 79 Ma). Here, we document similar structures in ophiuroids and asteroids from the Early Cretaceous of Poland (ca. 136 Ma) that are approximately 57 million years older than the oldest asterozoans with lens-like microstructures described thus far. We use scanning electron microscopy, synchrotron tomography, and electron backscatter diffraction combined with focused ion beam microscopy to describe the morphology and crystallography of these structures in exceptional detail. The results indicate that, similar to Recent light-sensitive ophiuroids, putative microlenses in Cretaceous ophiuroids and asteroids exhibit a shape and crystal orientation that would have minimized spherical aberration and birefringence. We suggest that these lens-like microstructures evolved by secondary deposition of calcite on pre-existing porous tubercles that were already present in ancestral Jurassic forms.

Keywords

Echinoderms Photosensitivity Cretaceous Microlenses Calcite Tomography 

Notes

Acknowledgements

This work was completed while the first author was a recipient of a grant from the Polish National Science Centre (NCN) Grant number DEC-2011/03/N/ST10/04798 and was performed in part in the NanoFun laboratory co-financed by the European Regional Development Fund within the Innovation Economy Operational Programme POIG.02.02.00-00-025/09. IAR was funded by an 1851 Royal Commission Research Fellowship. SZ was funded by grants RYC-2012-10576 and CGL2013-48877 from the Spanish MINECO. We acknowledge the Paul Scherrer Institut, Villigen, Switzerland for the provision of synchrotron radiation beamtime on the TOMCAT beamline at the Swiss Light Source and thank Professor Charles G Messing (Nova Southeastern University) for providing the extant ophiuroid specimen. We also thank two anonymous reviewers for their supportive comments.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

Investigations comply with the current laws of the country in which they were performed.

Supplementary material

11692_2017_9411_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 KB)

References

  1. Aizenberg, J., & Hendler, G. (2004). Designing efficient microlens arrays: lessons from nature. Journal of Materials Chemistry, 14, 2066–2072.CrossRefGoogle Scholar
  2. Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L., & Hendler, G. (2001). Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature, 412, 819–822.CrossRefPubMedGoogle Scholar
  3. Aronson, R. B. (1987). Predation on fossil and Recent ophiuroids. Paleobiology, 13, 187–192.CrossRefGoogle Scholar
  4. Aronson, R. B. (1989). A community-level test of the Mesozoic marine revolution theory. Paleobiology, 15, 20–25.CrossRefGoogle Scholar
  5. Aronson, R. B. (1991). Predation, physical disturbance and sub-lethal arm damage in ophiuroids: A Jurassic-Recent comparison. Marine Ecology Progress Series, 74, 91–97.CrossRefGoogle Scholar
  6. Blake, D.B., Tintori, A., & Hagdorn, H. (2000). A new asteroid (Echinodermata) from the Norian (Triassic) Calcare di Zorzino of northern Italy: Its stratigraphic occurrence and phylogenetic significance. Rivista Italiana di Paleontologia e Stratigrafia, 106, 141–156.Google Scholar
  7. Cunningham, J. A., Rahman, I. A., Lautenschlager, S., Rayfield, E. J., & Donoghue, P.C.J. (2014). A virtual world of palaeontology. Trends in Ecology & Evolution, 29, 347–357.CrossRefGoogle Scholar
  8. Delroisse, J., Mallefet, J., & Flammang, P. (2016). De novo adult transcriptomes of two European brittle stars: Spotlight on opsin-based photoreception. PLoS ONE, 11, e0152988. doi:10.1371/journal.pone.0152988.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Döderlein, L. (1898). Ueber “Krystallkörper” bei Seesternen. Denkschriften der Medizinisch Naturwissenschaftlichen Gesellschaft zu Jena, 8, 491–494.Google Scholar
  10. Dubois, P., & Hayt, S. (1990). Ultrastructure des ossicules d’échinodermes à stéréome non perforé. In C. De Ridder, P. Dubois; M.C. Lahaye & M. Jangoux (Eds.), Echinoderm research (pp. 217–223). Rotterdam: Balkema.Google Scholar
  11. Gale, A. (2011). Asteroidea (Echinodermata) from the Oxfordian (Late Jurassic) of Savigna, Départment [sic!] du Jura, France. Swiss Journal of Palaeontology, 130, 69–89.CrossRefGoogle Scholar
  12. Garm, A., & Nilsson, D. E. (2014). Visual navigation in starfish: first evidence for the use of vision and eyes in starfish. Proceedings of the Royal Society B: Biological Sciences, 281, 2013–3011.CrossRefGoogle Scholar
  13. Głuchowski, E. (1987). Jurassic and Early Cretaceous articulate Crinoidea from the Pieniny Klippen Belt and Tatra Mts. Poland. Studia Geologica Polonica, 94, 1–102.Google Scholar
  14. Gorzelak, P., & Salamon, M. A. (2009). Signs of benthic predation on Late Jurassic stalked crinoids, preliminary data. Palaios, 24, 70–73.CrossRefGoogle Scholar
  15. Gorzelak, P., Salamon. M. A., & Baumiller, T. K. (2012). Predator-induced macroevolutionary trends in Mesozoic crinoids. Proceedings of the National Academy of Sciences of the United States of America, 109, 7004–7007.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gorzelak, P., Salamon, M. A., Lach, R., Loba, M., & Ferré, B. (2014). Microlens arrays in the complex visual system of Cretaceous echinoderms. Nature Communications, 5, 3576. doi:10.1038/ncomms4576.CrossRefPubMedGoogle Scholar
  17. Heatfield, B. M. (1971). Growth of the calcareous skeleton during regeneration of spines of the sea urchin Strongylocentrotus purpuratus (Stimpson); a light and scanning electron microscope study. Journal of Morphology, 134, 57–90.CrossRefGoogle Scholar
  18. Hendler, G. (1984). Brittlestar color-change and phototaxis (Echinodermata: Ophiuroidea: Ophiocomidae). Marine Ecology, 5, 379–401.CrossRefGoogle Scholar
  19. Hendler, G. (2004). An echinoderm’s eye view of photoreception and vision. In T. Heinzeller, & J. Nebelsick (Eds.), Echinoderms; Munchen; Proceedings of the 11th International Echinoderm Conference. (pp. 339–350). Leiden: A.A. Balkema Publishers.CrossRefGoogle Scholar
  20. Hendler, G., & Byrne, M. (1987). Fine structure of the dorsal arm plate of Ophiocoma wendti (Echinodermata, Ophiuroidea). Zoomorphology, 107, 261–272.CrossRefGoogle Scholar
  21. Hess, H., Salamon, M. A., & Gorzelak, P. (2011). Late Jurassic-Early Cretaceous (Tithonian-Berriasian) cyrtocrinids from south-eastern Poland. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 260, 119–128.CrossRefGoogle Scholar
  22. Kaim, A. (2001). Faunal dynamics of juvenile gastropods and associated organisms across the Valanginian transgression-regression cycle in central Poland. Cretaceous Research, 22, 333–351.CrossRefGoogle Scholar
  23. Killian, C. E., & Wilt, F. H. (2008). Molecular aspects of biomineralization of the echinoderm endoskeleton. Chemical Reviews, 108, 4463–4474.CrossRefPubMedGoogle Scholar
  24. Mah, C. L. (2005). A phylogeny of Iconaster and Glyphodiscu s (Goniasteridae; Valvatida; Asteroidea) with descriptions of four new species. Zoosystema, 27, 131–167.Google Scholar
  25. Politi, Y., Arad, T., Klein, E., Weiner, S., & Addadi, L. (2004). Sea urchin spine calcite forms via a transient amorphous calcium phase. Science, 306, 1161–1164.CrossRefPubMedGoogle Scholar
  26. Raup, D. M. (1966). The endoskeleton. In R. A. Boolootian (Ed.), Physiology of echinodermata (pp. 379–395). New York: Interscience.Google Scholar
  27. Salamon, M. A. (2007). First record of bourgueticrinid crinoids from the Cenomanian of southern Poland. Cretaceous Research, 28, 459–499.CrossRefGoogle Scholar
  28. Salamon, M. A. (2008). The Callovian (Middle Jurassic) crinoids from northern Lithuania. Paläontologische Zeitschrift, 82, 269–278.CrossRefGoogle Scholar
  29. Salamon, M. A. (2009). Early Cretaceous (Valanginian) sea lilies (Echinodermata, Crinoidea) from Poland. Swiss Journal of Geosciences, 102, 77–88.CrossRefGoogle Scholar
  30. Salamon, M. A., & Gorzelak, P. (2010a). Cyrtocrinids (Echinodermata, Crinoidea) from Upper Jurassic Štramberk-type limestones in southern Poland. Palaeontology, 53, 869–885.CrossRefGoogle Scholar
  31. Salamon, M. A., & Gorzelak, P. (2010b). Late Cretaceous crinoids (Crinoidea) from Eastern Poland. Palaeontographica Abt. A, 291, 1–43.CrossRefGoogle Scholar
  32. Salamon, M. A., Niedźwiedzki, R., Lach, R., Brachaniec, T., & Gorzelak, P. (2012). Ophiuroids discovered in the Middle Triassic hypersaline environment. PLoS ONE, 7(11), e49798. doi:10.1371/journal.pone.0049798.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Salamon, M. A., & Zatoń, M. (2007). Late Bajocian through Callovian (Middle Jurassic) crinoid fauna from the epicontinental deposits of Poland. Swiss Journal of Geosciences, 100, 153–164.CrossRefGoogle Scholar
  34. Smith, A. B. (1990). Biomineralization in echinoderms. In J. G. Carter (Ed.), Skeletal biomineralization: Patterns, processes, and evolutionary trends (pp. 413–443). New York: Van Nostrand Reinhold.Google Scholar
  35. Stampanoni, M., et al. (2007). TOMCAT: A beamline for tomographic microscopy and coherent radiology experiments. AIP Conference Proceedings, 879, 848.CrossRefGoogle Scholar
  36. Sutton, M. D., Rahman, I. A., & Garwood, R. J. (2014). Techniques for virtual palaeontology. New York: Wiley.Google Scholar
  37. Sweatman, H.P.A. (1995). A field study of fish predation on juvenile crown-of-thorns starfish. Coral Reefs, 14(1), 47–53.CrossRefGoogle Scholar
  38. Torney, C., Lee, M. R., & Owen, A. W. (2014). Microstructure and growth of the lenses of schizochroal trilobite eyes. Palaeontology, 57, 783–799.CrossRefGoogle Scholar
  39. Ullrich-Lüter, E.M., Dupont, S., Arboleda, E., Hausen, H., & Arnone, M.I. (2011). Unique system of photoreceptors in sea urchin tube feet. Proceedings of the National Academy of Sciences of the United States of America, 108, 8367–8372.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Vermeij, G. J. (1977). The Mesozoic marine revolution; evidence from snails, predators and grazers. Paleobiology, 3, 245–258.CrossRefGoogle Scholar
  41. Villier, L. (2008). Sea star ossicles from the Callovian black clays of the Łuków area, eastern Poland. Neues Jahrbuch für Geologie und Paläontologie, Abh, 247, 147–160.CrossRefGoogle Scholar
  42. Villier, L., Charbonnier, S., & Riou, B. (2009). Sea stars from Middle Jurassic Lagerstätte of La Volute sur Rhône (Ardèche, France). Journal of Paleontology, 83, 389–398.CrossRefGoogle Scholar
  43. Villier, L., Kutscher, M., & Mah, C.H.L. (2004). Systematics and palaecology of middle Toarcian Asteroidea (Echinodermata) from the ‘Seuil du Poitou’, Western France. Geobios, 37, 807–825.CrossRefGoogle Scholar
  44. Vinogradova, E., Ruíz-Zepeda, F., Plascencia-Villa, G., & José-Yacamán, M. (2016). Calcitic microlens arrays in Archaster typicus: Microstructural evidence for an advanced photoreception system in modern starfish. Zoomorphology, 135, 83–87.CrossRefGoogle Scholar
  45. Walker, M. H. (1978). Food and feeding habits of Lethrinus chrysostomus Richardson (Pisces: Perciformes) and other Lethrinids on the Great Barrier Reef. Australian Journal of Marine & Freshwater Research, 29(5), 623–630.CrossRefGoogle Scholar
  46. Wei, T., Sun, Y., Zhang, B., Wang, R., & Xu, T. (2014). A mitogenomic perspective on the phylogenetic position of the Hapalogenys genus (Acanthopterygii: Perciformes) and the evolutionary origin of perciformes. PLoS ONE, 9(7), e103011. doi:10.1371/journal.pone.0103011.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yamamoto, M., & Yoshida, M. (1978). Fine structure of the ocelli of a synaptid holothurian,Opheodesoma spectabilis, and the effects of light and darkness. Zoomorphologie, 90, 1–17.CrossRefGoogle Scholar
  48. Yoshida, M. (1966). Photosensitivity. In R. A. Boolootian (Ed.), Physiology of echinodermata (pp. 435–464). New York: Wiley.Google Scholar
  49. Zatoń, M., Salamon, M. A., Boczarowski, A., & Sitek, S. (2008a). Taphonomy of dense ophiuroid accumulations from the Middle Triassic of Poland. Lethaia, 41(1), 47–58.CrossRefGoogle Scholar
  50. Zatoń, M., Salamon, M. A., & Kaźmierczak, J. (2008b). Cyrtocrinids (Crinoidea) and associated stalked crinoids from the Lower/Middle Oxfordian (Upper Jurassic) shelfal deposits of southern Poland. Geobios, 41, 559–569.CrossRefGoogle Scholar
  51. Zhang, S. (2003). Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnology, 21, 1171–1178.CrossRefPubMedGoogle Scholar
  52. Zhao, F., Bottjer, D. J., Hu, S., Yin, Z., & Zhu, M. (2013). Complexity and diversity of eyes in Early Cambrian ecosystems. Scientific Reports, 3, 2751. doi:10.1038/srep02751.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of PaleobiologyPolish Academy of SciencesWarsawPoland
  2. 2.Oxford University Museum of Natural HistoryOxfordUK
  3. 3.Instituto Geológico y Minero de España (IGME)ZaragozaSpain
  4. 4.Unidad Asociada en Ciencias de la TierraUniversidad de Zaragoza-IGMEZaragozaSpain
  5. 5.Institute of Geochemistry, Mineralogy and Petrology, Faculty of GeologyUniversity of WarsawWarsawPoland
  6. 6.Institute of Hydrogeology and Engineering Geology, Faculty of GeologyUniversity of WarsawWarsawPoland
  7. 7.Department of Geochemistry, Mineralogy and Petrography, Faculty of Earth SciencesUniversity of SilesiaSosnowiecPoland
  8. 8.Department of Palaeontology and Stratigraphy, Faculty of Earth SciencesUniversity of SilesiaSosnowiecPoland

Personalised recommendations