Evolutionary Biology

, Volume 43, Issue 4, pp 427–445 | Cite as

Guest-Editorial Introduction: Converging Evolutionary Patterns in Life and Culture

  • Nathalie Gontier
Synthesis Paper


The natural world demonstrates signs of spatial–temporal order, an order that appears to us through a series of recognizable, recurring and consecutive patterns, i.e. regularities in forms, functions, behaviors, events and processes. These patterns lend insight into the modes and tempos of evolution and thus into the units, levels, and mechanisms that underlie the evolutionary hierarchy. Contributors to this special issue analyze converging patterns in the biological and sociocultural realm across and beyond classic divisions between micro- and macro-evolution; horizontal/reticulate and vertical evolution; phylogeny, ontogeny and ecology; synchronic and diachronic sociocultural and linguistic research; and tree and network diagrams. Explanations are sought in complexity theory, major transitions of evolution, and process and mechanism approaches to change; and consequences for notions such as “life”, “species”, “biological individuality”, “units” and “levels” of evolution are given.


Evolutionary patterns Horizontal transmission Vertical transmission Microevolution Macroevolution Hierarchy theory Systems theory Diachronic versus synchronic research Mode and tempo of evolution 



Work on this special issue was integrally funded by the Portuguese Foundation for Science and Technology (Fundação para a Ciência e a Tecnologia, Grant ID SFRH/BPD/89195/2012 and project ID UID/FIL/00678/2013). We cordially thank Benedikt Hallgrímsson for providing us with an excellent home for this issue, and the authors for contributing. All of us also extend our outspoken gratitude to Eveline Kolijn for the beautiful artistic cover to this volume. More information on evolutionary patterns can be found at and, where symposia and talks are featured that were presented at the International Conference on “Evolutionary Patterns: Horizontal and Vertical Transmission and Micro- and Macro-evolutionary Patterns of Biological and Sociocultural Evolution”. The conference was sponsored by the Portuguese Calouste Gulbenkian Foundation, the John Templeton Foundation (Grant ID 36288), and the Applied Evolutionary Epistemology Lab of the Centre for Philosophy of Science of the University of Lisbon, Portugal.

Compliance with Ethical Standards

Conflict of interest

The author declares to have no conflicts of interest.


  1. Abouheif, E., Favé, M. J., Ibarrarán-Viniegra, A. S., Lesoway, M. P., et al. (2014). Eco-evo-devo: The time has come. Advances in Experimental Medicine and Biology, 781, 107–125.PubMedCrossRefGoogle Scholar
  2. Allen, T. F. H., & Starr, T. B. (1982). Hierarchy: Perspectives for ecological complexity. Chicago, IL: University of Chicago Press.Google Scholar
  3. Anderson, E., & Stebbins, G. L. (1954). Hybridization as an evolutionary stimulus. Evolution, 8, 378–388.CrossRefGoogle Scholar
  4. Arnold, M. L., Ballerini, E. S., & Brothers, A. N. (2012). Hybrid fitness, adaptation and evolutionary diversification: Lessons learned from Irises, Louisiana. Heredity, 108, 159–166.PubMedCrossRefGoogle Scholar
  5. Atkinson, Q. D. (2010). The prospects for tracing deep language ancestry. Interdisciplinary views on molecular anthropology in the genomic era. Journal of Anthropological Sciences, 88, 231–233.PubMedGoogle Scholar
  6. Avery, O. T., Macleod, C. M., & McCarty, M. (1944). Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a deoxy-ribo-nucleic acid fraction isolated from pneumococcus type III. Journal of Experimental Medicine, 79, 137–157.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ayala, F. J. (1970). Teleological explanations in evolutionary biology. Philosophy of Science, 37(1), 1–15.CrossRefGoogle Scholar
  8. Barton, N. H. (1979). Gene flow past a cline. Heredity, 43, 333–339.CrossRefGoogle Scholar
  9. Beadle, G. W., & Tatum, E. L. (1941). Genetic control of biochemical reactions in Neurospora. Proceedings of the National Academy of Science, USA, 27(11), 499–506.CrossRefGoogle Scholar
  10. Benton, M. (2009). Paleontology and the history of life. In M. Ruse & J. Travis (Eds.), Evolution: The first four billion years (pp. 80–104). Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
  11. Blum, H. F. (1951). Time’s arrow and evolution. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  12. Boas, F. (1940). Race, language, and culture. New York: The Macmillan Company.Google Scholar
  13. Bonen, L., Cunningham, R. S., Gray, M. W., & Doolittle, W. F. (1977). Wheat embryo mitochondrial 18S ribosomal RNA: Evidence for its prokaryotic nature. Nucleic Acids Research, 4(3), 663–671.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bonen, L., & Doolittle, W. F. (1975). On the prokaryotic nature of red algal chloroplasts. Proceedings of the National Academy of Sciences, USA, 72(6), 2310–2314.CrossRefGoogle Scholar
  15. Borde, A., Guth, A., & Vilenkin, A. (2003). Inflationary spacetimes are incomplete in past directions. Physical Review Letters, 90(15), 151301.PubMedCrossRefGoogle Scholar
  16. Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary process. Chicago, IL: The University of Chicago Press.Google Scholar
  17. Bradie, M. (1986). Assessing evolutionary epistemology. Biology and Philosophy, 1, 401–459.CrossRefGoogle Scholar
  18. Brandon, R. N. (1982). The levels of selection. In R. N. Brandon, R. M. Burian (Eds.), Genes, organisms, populations: Controversies over the units of selection 1984 (pp. 133–139). Cambridge MA: MITGoogle Scholar
  19. Brucker, R. M., & Bordenstein, S. R. (2012). Speciation by symbiosis. Trends in Ecology and Evolution, 27, 443–451.PubMedCrossRefGoogle Scholar
  20. Cairns, J., Overbaugh, J., & Miller, S. (1988). The origin of mutants. Nature, 335(6186), 142–145.PubMedCrossRefGoogle Scholar
  21. Campbell, D. T. (1959). Methodological suggestions from a comparative psychology of knowledge processes. Inquiry, 2(3), 152–183.CrossRefGoogle Scholar
  22. Campbell, D. T. (1960). Blind variation and selective retention in creative thought as in other knowledge processes. Psychological Reviews, 67, 380–400.CrossRefGoogle Scholar
  23. Campbell, D. T. (1965). Variation and selective retention in socio-cultural evolution. In R. Herbert, G. Barringer, I. Blanksten, & R. W. Mack (Eds.), Social change in developing areas: A reinterpretation of evolutionary theory (pp. 19–49). Cambridge, MA: Schenkman.Google Scholar
  24. Campbell, D. T. (1974a). Evolutionary epistemology. In P. A. Schilpp (Ed.), The philosophy of Karl Popper (pp. 413–463). LaSalle, IL: Open Court.Google Scholar
  25. Campbell, D. T. (1974b). ‘Downward causation’ in hierarchically organized biological systems. In F. J. Ayala & T. Dobzhansky (Eds.), Studies in the philosophy of biology (pp. 179–186). London: Macmillan.CrossRefGoogle Scholar
  26. Campbell, D. T. (1997). From evolutionary epistemology via selection theory to a sociology of scientific validity; Edited by Cecilia Heyes and Barbara Frankel. Evolution and Cognition, 3(1), 5–38.Google Scholar
  27. Carroll, S. B., Grenier, J. K., & Weatherbee, S. D. (2005). From DNA to diversity: Molecular genetics and the evolution of animal design (2nd ed.). Malden, MA: Blackwell.Google Scholar
  28. Cavalli-Sforza, L. L., & Feldman, M. W. (1981). Cultural transmission and evolution: A quantitative approach. Princeton, NJ: Princeton University Press.Google Scholar
  29. Cech, T. R., et al. (1982). Transcription and splicing of the ribosomal RNA precursor of Tetrahymena. In H. Busch & L. Rothblum (Eds.), The cell nucleus (pp. 171–204). New York: Academic press.Google Scholar
  30. Claidière, N., & Sperber, D. (2007). The role of attraction in cultural evolution. Journal of Cognition and Culture, 7(2), 89–111.CrossRefGoogle Scholar
  31. Conway Morris, S. (2003). Life’s evolution: Inevitable humans in a lonely universe. Cambridge UK: Cambridge University Press.CrossRefGoogle Scholar
  32. Crick, F. (1968). The origin of the genetic code. Journal of Molecular Biology, 38, 367–379.PubMedCrossRefGoogle Scholar
  33. Croft, W. (2000). Explaining language change: An evolutionary approach. Essex: Pearson.Google Scholar
  34. Croft, W. (2002). The Darwinization of linguistics. Selection, 3(1), 75–91.CrossRefGoogle Scholar
  35. Curnoe, D., Ji, X., Taçon, P. S., & Yaozheng, G. (2015). Possible signatures of hominin hybridization from the early Holocene of southwest China. Scientific Reports, 5, 12408. doi: 10.1038/srep12408.PubMedCrossRefGoogle Scholar
  36. Darwin, C. (1859). On the origin of the species by means of natural selection: Or, the preservation of favored races in the struggle for life. London: John Murray.Google Scholar
  37. Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.Google Scholar
  38. de Saussure, F. (1916). Cours de linguistique générale; C. Bally & A. Sechehaye. Paris: Payot.Google Scholar
  39. Dobzhansky, T. (1973). Nothing in biology makes sense except in the light of evolution. The American Biology Teacher, 35, 125–129.CrossRefGoogle Scholar
  40. Doolittle, W. F. (1999). Phylogenetic classification and the universal tree. Science, 284(5423), 2124–2129.PubMedCrossRefGoogle Scholar
  41. Dunny, G. M., Brickman, T. J., & Dzorkin, M. (2008). Multicellular behavior in bacteria: Communication, cooperation, competition and cheating. BioEssays, 30, 296–298.PubMedCrossRefGoogle Scholar
  42. Durkheim, É. (1922). Éducation et sociologie. Paris: Les Presses universitaires de France.Google Scholar
  43. Eddington, A. (1928). The nature of the physical world. London: MacMillan.Google Scholar
  44. Eigen, M. (1971). Selforganization of matter and the evolution of biological macromolecules. Die Naturwissenschaften, 58(10), 465–523.PubMedCrossRefGoogle Scholar
  45. Eldredge, N. (1985). Unfinished synthesis: Biological hierarchies and modern evolutionary thought. Oxford: Oxford University Press.Google Scholar
  46. Eldredge, N. (1999). The pattern of evolution. New York: Freeman.Google Scholar
  47. Eldredge, N., & Cracraft, J. (1980). Phylogenetic analysis and the evolutionary process. New York: Columbia University Press.Google Scholar
  48. Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In T. J. M. Schopf (Ed.), Models in paleobiology (pp. 82–115). San Francisco, CA: W.H. Freeman.Google Scholar
  49. Fox, S. W., & Dose, K. (1977). Molecular evolution and the origin of life. New York: Marcel Dekker.Google Scholar
  50. Fox, C. W., Roff, D. A., & Fairbairn, D. J. (2001). Evolutionary ecology: Concepts and case studies. Oxford: Oxford University Press.Google Scholar
  51. Futuyma, D. (2015). Can modern evolutionary theory explain macroevolution? In E. Serrelli & N. Gontier (Eds.), Macroevolution (pp. 29–85). Dordrecht: Springer.Google Scholar
  52. Gehring, W. J. (1992). The homeobox in perspective. Trends in Biochemical Sciences, 17(8), 277–280.PubMedCrossRefGoogle Scholar
  53. Ghiselin, M. (1974). A radical solution to the species problem. Systematic Zoology, 23, 536–544.CrossRefGoogle Scholar
  54. Gilbert, W. (1986). The RNA world. Nature, 319(6055), 618.CrossRefGoogle Scholar
  55. Gilbert, S. F., & Epel, D. (2008). Ecological developmental biology: Integrating epigenetics, medicine and evolution. Sunderland, MA: Sinauer.Google Scholar
  56. Gontier, N. (2006a). Evolutionary epistemology. In J. Fieser, B. Dowden & J. Beebe (Eds.), The internet encyclopedia of philosophy.
  57. Gontier, N. (2006b). Evolutionary epistemology and the origin and evolution of language: Taking symbiogenesis seriously. In N. Gontier, J. P. Van Bendegem, & D. Aerts (Eds.), Evolutionary epistemology, language and culture: A non-adaptationist systems theoretical approach (pp. 195–226). Dordrecht: Springer.CrossRefGoogle Scholar
  58. Gontier, N. (2010). Evolutionary epistemology as a scientific method: A new look upon the units and levels of evolution debate. Theory in Biosciences, 129(2–3), 167–182.PubMedCrossRefGoogle Scholar
  59. Gontier, N. (2011). Depicting the tree of life: the philosophical and historical roots of evolutionary tree diagrams. Evolution: Education and Outreach, 4(515), 538.Google Scholar
  60. Gontier, N. (2012). Applied evolutionary epistemology: A new methodology to enhance interdisciplinary research between the life and human sciences. Kairos: Revista de Filosofia and Ciência, 4, 7–49.Google Scholar
  61. Gontier, N. (2015a). Reticulate evolution everywhere. In N. Gontier (Ed.), Reticulate evolution (pp. 1–38). Dordrecht: Springer.CrossRefGoogle Scholar
  62. Gontier, N. (2015b). Uniting micro- with macroevolution into an extended synthesis: Reintegrating life’s natural history into evolution studies. In E. Serrelli & N. Gontier (Eds.), Macroevolution: Explanation, interpretation and evidence (pp. 227–278). Dordrecht: Springer.Google Scholar
  63. Gontier, N., Bradie, M. (forthcoming). Acquiring knowledge on species-specific biorealities: The applied evolutionary epistemological approach. In R. Joyce (Ed.), Routledge handbook of evolution and philosophy. London: Routledge.Google Scholar
  64. Gontier, N., Van Bendegem, J. P., & Aerts, D. (Eds.). (2006). Evolutionary epistemology, language and culture: A non-adaptationist systems theoretical approach. Dordrecht: Springer.Google Scholar
  65. Goodwin, B. C., & Saunders, P. (1992). Theoretical biology: Epigenetic and evolutionary order from complex systems. Baltimore: Johns Hopkins University Press.Google Scholar
  66. Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
  67. Gould, S. J. (1981). Mismeasure of man. New York: Norton & Company.Google Scholar
  68. Gould, S. J. (1988). Trends as changes in variance: A new slant on progress and directionality in evolution. Journal of Paleontology, 62, 319–329.Google Scholar
  69. Gould, S. J. (1989). Wonderful life. New York: W.W. Norton and Company.Google Scholar
  70. Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society, London, 205, 581–598.CrossRefGoogle Scholar
  71. Gray, R. D., & Jordan, F. M. (2000). Language trees support the express-train sequence of Austronesian expansion. Nature, 405, 1052–1055.PubMedCrossRefGoogle Scholar
  72. Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., et al. (2010). A draft sequence of the Neanderthal genome. Science, 328(5979), 710–722.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Gruner, R. (1969). Uniqueness in nature and history. The Philosophical Quarterly, 19(75), 145–154.CrossRefGoogle Scholar
  74. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., & Altman, S. (1983). The RNA motility of ribonuclease P is the catalytic subunit of the enzyme. Cell, 135, 849–857.CrossRefGoogle Scholar
  75. Haeckel, E. (1866). Generelle Morphologie der Organismen (2 volumes). Berlin: Georg Reimer.CrossRefGoogle Scholar
  76. Haeckel, E. (1917). Kristallseelen, studien über das Anorganische Leben. Leipzig: Alfred Kroner Verlag.Google Scholar
  77. Hall, B. K. (1999). Evolutionary developmental biology. The Netherlands: Kluwer.CrossRefGoogle Scholar
  78. Harte, V. (2002). Plato on parts and wholes: The metaphysics of structure. Oxford: Oxford University Press.CrossRefGoogle Scholar
  79. Hebb, D. O. (1949). The organization of behavior. New York: Wiley.Google Scholar
  80. Hebert, P., et al. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B, 270, 313–321.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Hotopp, J. C. D. (2011). Horizontal gene transfer between bacteria and animals. Trends in Genetics, 27(4), 157–163.CrossRefGoogle Scholar
  82. Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.Google Scholar
  83. Hull, D. L. (1980). Individuality and selection. Annual Review of Ecology and Systematics, 11, 311–332.CrossRefGoogle Scholar
  84. Husserl, E. (1928). Vorlesungen zur Phänomenologie des inneren Zeitbewusstseins. Niemeyer: Halle a.S.Google Scholar
  85. Hutton, J. (1788). Theory of the earth; or an investigation of the laws observable in the composition, dissolution, and restoration of land upon the globe. Transactions of the Royal Society of Edinburgh, 1, 209–304.CrossRefGoogle Scholar
  86. Huxley, J. (1942). Evolution: The modern synthesis. London: Allen and Unwin.Google Scholar
  87. Huxley, J. (1957). The three types of evolutionary process. Nature, 180, 454–455.CrossRefGoogle Scholar
  88. Jablonka, E., & Lamb, M. J. (1995). Epigenetic inheritance and evolution: The Lamarckian dimension. London: Oxford University Press.Google Scholar
  89. Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3, 318.PubMedCrossRefGoogle Scholar
  90. Kauffman, S. A. (1971). Cellular homeostasis, epigenesis, and replication in randomly aggregated macromolecular systems. Journal of Cybernetics, 1, 71–96.CrossRefGoogle Scholar
  91. Kauffman, S. A. (2011). Approaches to the origin of life on earth. Life, 1(1), 34–48.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Kay, L. E. (1996). The molecular vision of life. London: Chapman & Hall.Google Scholar
  93. Keeling, P. J., & Palmer, J. D. (2008). Horizontal gene transfer in eukaryotic evolution. Nature Reviews Genetics, 9(8), 605–618.PubMedCrossRefGoogle Scholar
  94. Kimura, M. (1968). Evolutionary rate at the molecular level. Nature, 217, 624–626.PubMedCrossRefGoogle Scholar
  95. Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  96. Koestler, A. (1967). The ghost in the machine. New York: Macmillan.Google Scholar
  97. Koonin, E. V., Makarova, K. S., & Aravind, L. (2001). Horizontal gene transfer in prokaryotes: Quantification and classification. Annual Review of Microbiology, 55(1), 709–742.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Kroeber, A. (1923). Anthropology. New York: Harcourt and Brace.Google Scholar
  99. Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago, IL: Chicago University Press.Google Scholar
  100. Laland, K., Wray, G. A., Hoekstra, H. E., et al. (2014). Does evolutionary theory need a rethink? Nature, 514, 161–164.PubMedCrossRefGoogle Scholar
  101. Lederberg, J. (1952). Cell genetics and hereditary symbiosis. Physiological Reviews, 32(4), 403–430.PubMedGoogle Scholar
  102. Levins, R., & Lewontin, R. (1985). The dialectical biologist. London: Harvard University Press.Google Scholar
  103. Levinton, J. S., & Futuyma, D. J. (1982). Macroevolution: Pattern and process introduction and background. Evolution, 36, 425–473.CrossRefGoogle Scholar
  104. Lewontin, R. C. (1970). Units of selection. Annual Review of Ecology and Systematics, 1, 1–18.CrossRefGoogle Scholar
  105. Lorenz, K. (1941). Kants Lehre vom Apriorischen im Lichte gegenwärtiger Biologie. Blätter für Deutsche Philosophie, 15, 94–125.Google Scholar
  106. Lorenz, K. (1958). The evolution of behavior. Scientific American, 199(6), 67–78.PubMedCrossRefGoogle Scholar
  107. Lorenz, K. (1977). Behind the Mirror. London: Methuen.Google Scholar
  108. Lorenz, K. (1985). Wege zur Evolutionären Erkenntnistheorie. In A. Ott, G. Jörg, P. Wagner, & F. Wuketits (Eds.), Evolution, Ordnung und Erkenntnis (pp. 13–20). Heidelberg: Springer.Google Scholar
  109. Love, A. C. (2003). Evolutionary morphology, innovation, and the synthesis of evolutionary and developmental biology. Biology and Philosophy, 18, 309–345.CrossRefGoogle Scholar
  110. Malinowski, B. (1922). Ethnology and the study of society. Economica, 2, 208–219.CrossRefGoogle Scholar
  111. Malinowski, B. (1945). The dynamics of culture change. Connecticut, NH: Yale University Press.Google Scholar
  112. Margulis, L. (1970). Origin of eukaryotic cells. Connecticut, NH: Yale University Press.Google Scholar
  113. Margulis, L., & Sagan, D. (2000). What is life. Berkeley, CA: University of California Press.Google Scholar
  114. Marx, K. (1890). Das Kapital, Kritik der politschen Oekonomie. Buch 1: Der Produktionsprocess des Kapitals. 4th edition, reprinted by Friedrich Engels. Hamburg: Verlag von Otto Meisner.Google Scholar
  115. Mayhew, P. J. (2006). Discovering evolutionary ecology: Bringing together ecology and evolution. New York: Oxford University Press.Google Scholar
  116. Maynard Smith, J., & Szathmáry, E. (1995). The major transitions in evolution. New York: Oxford University Press.Google Scholar
  117. Mayr, E. (1942). Systematics and the origin of species. New York: Columbia University Press.Google Scholar
  118. Mayr, E. (1961). Cause and effect in biology: Kinds of causes, predictability, and teleology are viewed by a practicing biologist. Science, 134(3489), 1501–1506.PubMedCrossRefGoogle Scholar
  119. McGinnis, W., Levine, M. S., Hafen, E., Kuroiwa, A., & Gehring, W. J. (1984). A conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature, 308(5958), 428–433.PubMedCrossRefGoogle Scholar
  120. McNamara, K. J. (Ed.). (1990). Evolutionary trends. Tuscan, AZ: University of Arizona Press.Google Scholar
  121. McShea, D. W. (1998). Possible largest-scale trends in organismal evolution: Eight live hypotheses. Annual Review of Ecology and Systematics, 29, 293–318.CrossRefGoogle Scholar
  122. McShea, D. W. (2001). Evolutionary trends. In D. E. G. Briggs & P. R. Crowther (Eds.), Palaeobiology (pp. 206–211). Oxford: Blackwell Science.CrossRefGoogle Scholar
  123. McShea, D. W., & Brandon, R. N. (2010). Biology’s first law. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
  124. Miller, S. L. (1953). Production of amino acids under possible primitive earth conditions. Science, 117(3046), 528–529.PubMedCrossRefGoogle Scholar
  125. Minelli, A., & Pradeu, T. (Eds.). (2014). Toward a theory of development. Oxford: Oxford University Press.Google Scholar
  126. Müller, G. (2007). Evo-devo: Extending the evolutionary synthesis. Nature Reviews Genetics, 8, 943–949.PubMedCrossRefGoogle Scholar
  127. Munz, P. (1993). Philosophical Darwinism: On the origin of knowledge by means of natural selection. London: Routledge.CrossRefGoogle Scholar
  128. Nadell, C. D., Xavier, J. B., & Foster, K. R. (2009). The sociobiology of biofilms. FEMS Microbiological Reviews, 33(1), 206–224.CrossRefGoogle Scholar
  129. Nelson-Sathi, S., Popa, O., List, J. M., Geisler, H., Martin, W. F., & Dagan, T. (2013). Reconstructing the lateral component of language history and genome evolution using network approaches. In H. Fangerau, H. Geisler, T. Halling, & W. F. Martin (Eds.), Classification and evolution in biology, linguistics and the history of science (pp. 163–180). Stuttgart: Steiner.Google Scholar
  130. Nuño de la Rosa, L., Etxeberria, A. (2012). Pattern and process in evo-devo: Descriptions and explanations. In H. de Regt et al (Eds.), EPSA Philosophy of Science, Amsterdam 2009, The European Philosophy of Science Association Proceeding 1 (pp. 263–274). doi: 10.1007/978-94-007-2404-4_23.
  131. Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche construction: The neglected process in evolution. Princeton, NJ: Princeton University Press.Google Scholar
  132. O’Neill, R. V., De Angelis, D., Waide, J., & Allen, T. F. H. (1986). A hierarchical concept of ecosystems. Princeton, NJ: Princeton University Press.Google Scholar
  133. Oparin, A. I. (1968). Genesis and evolutionary development of life. New York: Academic Press.Google Scholar
  134. Oparin, A. I., & Gladilin, K. L. (1980). Evolution of self-assembly of probionts. BioSystems, 12, 133–145.PubMedCrossRefGoogle Scholar
  135. Orgel, L. E. (1973). The origins of life: Molecules and natural selection. New York: Wiley.Google Scholar
  136. Oyama, S., Griffiths, P. E., & Gray, R. D. (2001). Cycles of contingency, developmental systems and evolution. Cambridge, MA: MIT Press.Google Scholar
  137. Pattee, H. H. (1970). The problem of biological hierarchy. In C. H. Waddington (Ed.), Toward a theoretical biology (pp. 117–136). Edinburgh: Edinburgh University Press.Google Scholar
  138. Pattee, H. H. (Ed.). (1973). Hierarchy theory: The challenge of complex systems. New York: Braziller.Google Scholar
  139. Pearson, J. C., Lemons, D., & McGinnis, W. (2005). Modulating Hox gene functions during animal body patterning. Nature Reviews Genetics, 6, 893–904.PubMedCrossRefGoogle Scholar
  140. Piaget, J. (1950). Introduction à l'épistémologie génétique (Vol. 3). Paris: Presses universitaires de France.Google Scholar
  141. Pigliucci, M., & Müller, G. B. (Eds.). (2010). Evolution: The extended synthesis. Cambridge, MA: MIT Press.Google Scholar
  142. Pinxten, R. (1997). When the day breaks. Berlin: Peter Lang.Google Scholar
  143. Popa, O., Hazkani-Covo, E., Landan, G., Martin, W., & Dagan, T. (2011). Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Research, 21(4), 599–609.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Popper, K. (1957). The poverty of historicism. London: Routledge.Google Scholar
  145. Prigogine, I. (1980). From being to becoming. New York: Freeman.Google Scholar
  146. Prigogine, I. (1990). Time, dynamics and chaos: Integrating Poincare’s ‘non-integrable systems’. Center for Studies in Statistical Mechanics and Complex Systems at the University of Texas-Austin,
  147. Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., et al. (2014). The complete genome sequence of a Neanderthal from the Altai mountains. Nature, 505(7481), 43–49.PubMedCrossRefGoogle Scholar
  148. Riedl, R. (1977). A systems-analytical approach to macroevolutionary phenomena. Quarterly Review of Biology, 52, 351–370.PubMedCrossRefGoogle Scholar
  149. Riedl, R. (1984). Biology of knowledge: The evolutionary basis of reason. New York: Wiley.Google Scholar
  150. Rieppel, O., & Grande, L. (1994). Summary and comments on systematic pattern and evolutionary process. In L. Grande, O. Rieppel (Eds.), Interpreting the hierarchy of nature (pp. 227–255). San Diego, CA: Academia Press.Google Scholar
  151. Sagan, L. (1967). On the origin of mitosing cells. Journal of Theoretical Biology, 14(3), 255–274.PubMedCrossRefGoogle Scholar
  152. Salthe, S. (1985). Evolving hierarchical systems: Their structure and representation. New York: Columbia University Press.Google Scholar
  153. Schlichting, C., & Pigliucci, M. (1998). Phenotypic evolution: A reaction norm perspective. Sunderland: Sinauer Associates.Google Scholar
  154. Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106, 467–482.Google Scholar
  155. Simpson, G. G. (1944). Tempo and mode in evolution. New York: Columbia University Press.Google Scholar
  156. Simpson, G. G. (1953). Life of the past: An introduction to paleontology. Connecticut, NH: Yale University Press.Google Scholar
  157. Skinner, B. F. (1953). Science and human behavior. New York: Macmillan.Google Scholar
  158. Skinner, B. F. (1984). The evolution of behavior. Journal of the Experimental Analysis of Behavior, 41, 217–221.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Smocovitis, V. B. (1996). Unifying biology: The evolutionary synthesis and evolutionary biology. Princeton, NJ: Princeton University Press.Google Scholar
  160. Spencer, H. (1876). The principles of sociology (Vol. 2). New York: Appleton.Google Scholar
  161. Syvanen, M. (1985). Cross-species gene transfer; implications for a new theory of evolution. Journal of Theoretical Biology, 112(2), 333–343.PubMedCrossRefGoogle Scholar
  162. Szathmáry, E., & Maynard Smith, J. (1995). The major evolutionary transitions. Nature, 374(6519), 227–232.PubMedCrossRefGoogle Scholar
  163. Thompson, D. W. (1917). On growth and form. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  164. Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410–433.CrossRefGoogle Scholar
  165. Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London, 237(641), 37–72.CrossRefGoogle Scholar
  166. Van Valen, L. A. (1976). Ecological species, multispecies, and oaks. Taxon, 25, 233–239.CrossRefGoogle Scholar
  167. Vernot, B., & Akey, J. M. (2014). Resurrecting surviving Neanderthal lineages from modern human genomes. Science, 343(6174), 1017–1021.PubMedCrossRefGoogle Scholar
  168. Vollmer, G. (1984). Mesocosm and objective knowledge: On problems solved by evolutionary epistemology. In F. Wuketits (Ed.), Concepts and approaches in evolutionary epistemology (pp. 69–121). Dordrecht: D. Reidel Publishing Company.CrossRefGoogle Scholar
  169. Vrba, E. S. (1985). Environment and evolution: Alternative causes of the temporal distribution of evolutionary events. South Africa Journal of Science, 815, 229–236.Google Scholar
  170. Watson, J., & Crick, F. (1953). Molecular structure of nucleic acids. Nature, 171, 737–738.PubMedCrossRefGoogle Scholar
  171. West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford: Oxford University Press.Google Scholar
  172. Williams, G. C. (1966). Adaptation and natural selection. Princeton, NJ: Princeton University Press.Google Scholar
  173. Wimsatt, Z. (1980). Randomness and perceived-randomness in evolutionary biology. Synthese, 43(2), 287–329.CrossRefGoogle Scholar
  174. Woese, C. R. (1967). The genetic code. New York: Harper and Row.Google Scholar
  175. Woese, C. R. (2004). A new biology for a new century. Microbiology and Molecular Biology Reviews, 68(2), 173–186.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Zilber-Rosenberg, I., & Rosenberg, E. (2008). Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiology Reviews, 32, 723–735.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Centre for Philosophy of Science, Applied Evolutionary Epistemology Lab, Department of History and Philosophy of Science, Faculty of ScienceUniversity of LisbonLisbonPortugal

Personalised recommendations