Evolutionary Biology

, Volume 43, Issue 1, pp 48–59 | Cite as

Morphological Adaptations to Migration in Birds

  • Csongor I. VágásiEmail author
  • Péter L. Pap
  • Orsolya Vincze
  • Gergely Osváth
  • Johannes Erritzøe
  • Anders Pape Møller
Research Article


Migratory flight performance has direct or carry-over effects on fitness. Therefore, selection is expected to act on minimizing the costs of migratory flight, which increases with the distance covered. Aerodynamic theory predicts how morphological adaptations improve flight performance. These predictions have rarely been tested in comparative analyses that account for scaling and phylogenetic effects. We amassed a unique dataset of 149 European bird species and 10 morphological traits. Mass-adjusted aspect ratio increased, while mass-adjusted heart weight and wing loading decreased with increasing migration distance. These results were robust to whether the analyses were based on the entire species pool or limited to passerines or migrants. Our findings indicate that selection due to migration acts on wing traits that reduce the energetic cost of transportation to increase the flight range. Consequently, the demands for high ‘exercise organ’ performance might be low, and hence such energetically expensive tissues are not associated (pectoral muscle) or are inversely associated (heart) with migration distance.


Aerodynamics Functional morphology ‘Migratory syndrome’ Organ size Phylogenetic comparative analysis Wing morphology 



We appreciate the help during fieldwork by Lőrinc Bărbos, Attila Marton, Krisztina Sándor and Judit Veres-Szászka, the numerous bird carcasses provided by the members of the ‘Milvus Group’ Bird and Nature Protection Association, the Museum of Zoology of Babeş-Bolyai University and Costică Adam. László Zsolt Garamszegi kindly aided with statistical analyses and Jácint Tökölyi with the calculation of migration distances. We thank the administration of the ‘Alexandru Borza’ Botanical Garden of Cluj Napoca for the permission to capture birds. Two anonymous reviewers provided constructive criticism. This work was licensed by the Romanian Academy of Sciences and adhered to recommended practices for the ringing, measuring, and sampling of wild birds for research purposes. Logistics and data collection between 2010 and 2013 was financed by a CNCSIS Grant (PN II. RU TE 291/2010) of the Romanian Ministry of Education and Research. CIV and OV were supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4.A/2-11-1-2012-0001 ‘National Excellence Program’. During writing, CIV was financed by the Postdoctoral Fellowship Programme and PLP by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11692_2015_9349_MOESM1_ESM.docx (58 kb)
ESM 1 The ESM provides (1) the R code used to compute migration distance from distribution maps, (2) the measurement, calculation and repeatability of wing morphology variables, (3) the usage of the scaling function, (4) the phylogenetic hypothesis, (5) the caption for the ESM2 file containing the entire dataset, and (6) the matrix of pairwise correlations between morphological traits (DOCX 58 kb)
11692_2015_9349_MOESM2_ESM.xlsx (43 kb)
ESM 2 The entire dataset (.xlsx) with legend (XLSX 42 kb)


  1. Alerstam, T., Hedenström, A., & Åkesson, S. (2003). Long-distance migration: Evolution and determinants. Oikos, 103, 247–260.CrossRefGoogle Scholar
  2. Alerstam, T., Rosén, M., Bäckman, J., Ericson, P. G. P., & Hellgren, O. (2007). Flight speeds among bird species: Allometric and phylogenetic effects. PLoS Biology, 5, e197.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Altizer, S., Bartel, R., & Han, B. A. (2011). Animal migration and infectious disease risk. Science, 331, 296–302.CrossRefPubMedGoogle Scholar
  4. Battley, P. F., Piersma, T., Dietz, M. W., Tang, S., Dekinga, A., & Hulsman, K. (2000). Empirical evidence for differential organ reductions during trans-oceanic bird flight. Proceedings of the Royal Society of London B, 267, 191–195.CrossRefGoogle Scholar
  5. Bauer, S., & Hoye, B. J. (2014). Migratory animals couple biodiversity and ecosystem functioning worldwide. Science, 344, 1242552.CrossRefPubMedGoogle Scholar
  6. Bennett, P. M., & Owens, I. P. F. (2002). Evolutionary ecology of birds. Life histories, mating systems and extinction. New York, NY: Oxford University Press.Google Scholar
  7. BirdLife International, & NatureServe. (2012). Bird species distribution maps of the world, version 2.0. Cambridge, UK and Arlington, TX: BirdLife International and NatureServe.Google Scholar
  8. Bishop, C. M. (1997). Heart mass and the maximum cardiac output of birds and mammals: Implications for estimating the maximum aerobic power input of flying animals. Philosophical Transactions of the Royal Society of London B, 352, 447–456.CrossRefGoogle Scholar
  9. Bishop, C. M., & Butler, P. J. (1995). Physiological modelling of oxygen consumption in birds during flight. Journal of Experimental Biology, 198, 2153–2163.PubMedGoogle Scholar
  10. Bivand, R., & Rundel, C. (2013). rgeos: Interface to geometry engineopen source (GEOS). R package version 0.3-2.
  11. Bowlin, M. S., Bisson, I.-A., Shamoun-Baranes, J., Reichard, J. D., Sapir, N., Marra, P. P., et al. (2010). Grand challenges in migration biology. Integrative and Comparative Biology, 50, 261–279.CrossRefPubMedGoogle Scholar
  12. Bruderer, B., Peter, D., Boldt, A., & Liechti, F. (2010). Wing-beat characteristics of birds recorded with tracking radar and cine camera. Ibis, 152, 272–291.CrossRefGoogle Scholar
  13. Calmaestra, R. G., & Moreno, E. (2000). Ecomorphological patterns related to migration: A comparative osteological study with passerines. Journal of Zoology, 252, 495–501.CrossRefGoogle Scholar
  14. Calmaestra, R. G., & Moreno, E. (2001). A phylogenetically-based analysis on the relationship between wing morphology and migratory behaviour in passeriformes. Ardea, 89, 407–416.Google Scholar
  15. Costantini, D., Cardinale, M., & Carere, C. (2007). Oxidative damage and anti-oxidant capacity in two migratory bird species at a stop-over site. Comparative Biochemistry and Physiology C, 144, 363–371.Google Scholar
  16. Dingle, H. (2006). Animal migration: Is there a common migratory syndrome? Journal of Ornithology, 147, 212–220.CrossRefGoogle Scholar
  17. Fiedler, W. (2005). Ecomorphology of the external flight apparatus of blackcaps (Sylvia atricapilla) with different migration behavior. Annals of the New York Academy of Sciences, 1046, 253–263.CrossRefPubMedGoogle Scholar
  18. Freckleton, R. F., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: A test and review of evidence. American Naturalist, 160, 712–726.CrossRefPubMedGoogle Scholar
  19. Garamszegi, L. Z., Møller, A. P., & Erritzøe, J. (2002). Coevolving avian eye size and brain size in relation to prey capture and nocturnality. Proceedings of the Royal Society of London B, 269, 961–967.CrossRefGoogle Scholar
  20. Harvey, P. H. (2000). Why and how phylogenetic relationships should be incorporated into studies of scaling. In J. H. Brown & G. B. West (Eds.), Scaling in biology. New York, NY: Oxford University Press.Google Scholar
  21. Hedenström, A. (1993). Migration by soaring or flapping flight in birds: The relative importance of energy cost and speed. Philosophical Transactions of the Royal Society of London B, 342, 353–361.CrossRefGoogle Scholar
  22. Hedenström, A. (2008). Adaptations to migration in birds: Behavioural strategies, morphology and scaling effects. Philosophical Transactions of the Royal Society of London B, 363, 287–299.CrossRefGoogle Scholar
  23. Jenni, L., Jenni-Eiermann, S., Spina, F., & Schwabl, H. (2000). Regulation of protein breakdown and adrenocortical response to stress in birds during migratory flight. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 278, R1182–R1189.PubMedGoogle Scholar
  24. Jones, M. R., & Witt, C. C. (2014). Migrate small, sound big: Functional constraints on body size promote tracheal elongation in cranes. Journal of Evolutionary Biology, 27, 1256–1264.CrossRefPubMedGoogle Scholar
  25. Kaboli, M., Aliabadian, M., Guillaumet, A., Roselaar, C. S., & Prodon, R. (2007). Ecomorphology of the wheatears (genus Oenanthe). Ibis, 149, 792–805.CrossRefGoogle Scholar
  26. Klaassen, M. (1996). Metabolic constraints on long-distance migration in birds. Journal of Experimental Biology, 199, 57–64.PubMedGoogle Scholar
  27. Klaassen, R. H., Hake, M., Strandberg, R., Koks, B. J., Trierweiler, C., Exo, K.-M., et al. (2014). When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. Journal of Animal Ecology, 83, 176–184.CrossRefPubMedGoogle Scholar
  28. Konarzewski, M., & Diamond, J. (1995). Evolution of basal metabolic rate and organ masses in laboratory mice. Evolution, 49, 1239–1248.CrossRefGoogle Scholar
  29. Leisler, B., & Winkler, H. (2003). Morphological consequences of migration in passerines. In P. Berthold, E. Gwinner, & E. Sonnenschein (Eds.), Avian migration (pp. 175–186). Heidelberg, Germany: Springer.CrossRefGoogle Scholar
  30. Lindhe Norberg, U. M. (2002). Structure, form, and function of flight in engineering and the living world. Journal of Morphology, 252, 52–81.CrossRefPubMedGoogle Scholar
  31. Lockwood, R., Swaddle, J. P., & Rayner, J. M. V. (1998). Avian wingtip shape reconsidered: Wingtip shape indices and morphological adaptations to migration. Journal of Avian Biology, 29, 273–292.CrossRefGoogle Scholar
  32. Marchetti, K., Price, T., & Richman, A. (1995). Correlates of wing morphology with foraging behaviour and migration distance in the genus Phylloscopus. Journal of Avian Biology, 26, 177–181.CrossRefGoogle Scholar
  33. Martins, E. P., & Hansen, T. F. (1997). Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. American Naturalist, 149, 646–667.CrossRefGoogle Scholar
  34. Møller, A. P., & Birkhead, T. R. (1994). The evolution of plumage brightness in birds is related to extrapair paternity. Evolution, 48, 1089–1100.CrossRefGoogle Scholar
  35. Møller, A. P., Erritzøe, J., & Garamszegi, L. Z. (2005). Covariation between brain size and immunity in birds: Implications for brain size evolution. Journal of Evolutionary Biology, 18, 223–237.CrossRefPubMedGoogle Scholar
  36. Møller, A. P., Rubolini, D., & Lehikoinen, E. (2008). Populations of migratory bird species that did not show a phenological response to climate change are declining. Proceedings of the National Academy of Sciences of the USA, 105, 16195–16200.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Mönkkönen, M. (1992). Life history traits of palaearctic and nearctic migrant passerines. Ornis Fennica, 69, 161–172.Google Scholar
  38. Mönkkönen, M. (1995). Do migrant birds have more pointed wings?: A comparative study. Evolutionary Ecology, 9, 520–528.CrossRefGoogle Scholar
  39. Mulvihill, R. S., & Chandler, C. R. (1990). The relationship between wing shape and differential migration in the Dark-eyed Junco. Auk, 107, 490–499.Google Scholar
  40. Newton, I. (2004). Population limitation in migrants. Ibis, 146, 197–226.CrossRefGoogle Scholar
  41. Norberg, U. M. (1990). Vertebrate flight: Mechanisms, physiology, morphology, ecology and evolution. Berlin, Germany: Springer.CrossRefGoogle Scholar
  42. Norberg, U. M. (1994). Wing design, flight performance, and habitat use in bats. In P. C. Wainwright & S. M. Reilly (Eds.), Ecological morphology (pp. 205–239). Chicago, IL: University of Chicago Press.Google Scholar
  43. Orme, C. D. L., Freckleton, R. P., Thomas, G. H., Petzoldt, T., & Fritz, S. A. (2011). caper: Comparative analyses of phylogenetics and evolution in R. R package version 0.5.2.
  44. Oufiero, C. E., Meredith, R. W., Jugo, K. N., Tran, P., Chappell, M. A., Springer, M. S., et al. (2014). The evolution of the sexually selected sword in Xiphophorus does not compromise aerobic locomotor performance. Evolution, 68, 1806–1823.CrossRefPubMedGoogle Scholar
  45. Pagel, M. (1997). Inferring evolutionary processes from phylogenies. Zoologica Scripta, 26, 331–348.CrossRefGoogle Scholar
  46. Pagel, M. (1999). The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Systematic Biology, 48, 612–622.CrossRefGoogle Scholar
  47. Pap, P. L., Osváth, G., Sándor, K., Vincze, O., Bărbos, L., Marton, A., et al. (2015). Interspecific variation in the structural properties of flight feathers in birds indicates adaptation to flight requirements and habitat. Functional Ecology, 29, 746–757. Retrieved from
  48. Pennycuick, C. J. (1998). Computer simulation of fat and muscle burn in long-distance bird migration. Journal of Theoretical Biology, 191, 47–61.CrossRefPubMedGoogle Scholar
  49. Pennycuick, C. J. (2008). Modelling the flying bird. London, UK: Academic Press.Google Scholar
  50. Piersma, T., & Lindström, Å. (1997). Rapid reversible changes in organ size as a component of adaptive behaviour. Trends in Ecology & Evolution, 12, 134–138.CrossRefGoogle Scholar
  51. Piersma, T., Pérez-Tris, J., Mouritsen, H., Bauchinger, U., & Bairlein, F. (2005). Is there a “migratory syndrome” common to all migrant birds? Annals of the New York Academy of Sciences, 1046, 282–293.CrossRefPubMedGoogle Scholar
  52. R Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria. R Foundation for Statistical Computing.
  53. Rayner, J. M. V. (1988). Form and function in avian flight. In R. F. Johnston (Ed.), Current Ornithology (Vol. 5, pp. 1–66). New York, NY: Plenum Press.CrossRefGoogle Scholar
  54. Rayner, J. M. V. (1990). The mechanics of flight and bird migration performance. In E. Gwinner (Ed.), Bird migration. Psyiology and ecophysiology (pp. 283–299). Heidelberg, Germany: Springer.CrossRefGoogle Scholar
  55. Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223.CrossRefGoogle Scholar
  56. Shaffer, S. A., Tremblay, Y., Weimerskirch, H., Scott, D., Thompson, D. R., Sagar, P. M., et al. (2006). Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer. Proceedings of the National Academy of Sciences of the USA, 103, 12799–12802.PubMedCentralCrossRefPubMedGoogle Scholar
  57. Shyy, W., Lian, Y., Tang, J., Viieru, D., & Liu, H. (2008). Aerodynamics of low Reynolds number flyers. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  58. Sol, D., Lefebvre, L., & Rodríguez-Teijeiro, J. D. (2005). Brain size, innovative propensity and migratory behaviour in temperate Palaearctic birds. Proceedings of the Royal Society of London B, 272, 1433–1441.CrossRefGoogle Scholar
  59. Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade, B., & Araujo, M. B. (2011). Consequences of climate change on the tree of life in Europe. Nature, 470, 531–534.CrossRefPubMedGoogle Scholar
  60. Videler, J. J. (2005). Avian flight. New York, NY: Oxford University Press.Google Scholar
  61. Voelker, G. (2001). Morphological correlates of migratory distance and flight display in the avian genus Anthus. Biological Journal of the Linnean Society, 73, 425–435.CrossRefGoogle Scholar
  62. Wainwright, P. C., & Reilly, S. M. (Eds.). (1994). Ecological morphology: Integrative organismal biology. Chicago, IL: University of Chicago Press.Google Scholar
  63. Wang, X., McGowan, A. J., & Dyke, G. J. (2011). Avian wing proportions and flight styles: First step towards predicting the flight modes of Mesozoic birds. PLoS One, 6, e28672.PubMedCentralCrossRefPubMedGoogle Scholar
  64. Webster, M. S., Peter, P., Haig, S. M., Bensch, S., & Holmes, R. T. (2002). Links between worlds: Unraveling migratory connectivity. Trends in Ecology & Evolution, 17, 76–83.CrossRefGoogle Scholar
  65. Wiersma, P., Nowak, B., & Williams, J. B. (2012). Small organ size contributes to the slow pace of life in tropical birds. Journal of Experimental Biology, 215, 1662–1669.CrossRefPubMedGoogle Scholar
  66. Winkler, H., & Leisler, B. (1992). On the ecomorphology of migrants. Ibis, 134(S1), 21–28.Google Scholar
  67. Withers, P. C. (1981). An aerodynamic analysis of bird wings as fixed aerofoils. Journal of Experimental Biology, 90, 143–162.Google Scholar
  68. Wolak, M. E., Fairbairn, D. J., & Paulsen, Y. R. (2011). Guidelines for estimating repeatability. Methods in Ecology and Evolution, 3, 129–137.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Csongor I. Vágási
    • 1
    • 2
    Email author
  • Péter L. Pap
    • 1
    • 2
  • Orsolya Vincze
    • 1
    • 2
  • Gergely Osváth
    • 2
    • 3
  • Johannes Erritzøe
    • 4
  • Anders Pape Møller
    • 5
  1. 1.MTA-DE “Lendület” Behavioural Ecology Research Group, Department of Evolutionary ZoologyUniversity of DebrecenDebrecenHungary
  2. 2.Evolutionary Ecology Group, Hungarian Department of Biology and EcologyBabeş-Bolyai UniversityCluj NapocaRomania
  3. 3.Museum of ZoologyBabeş-Bolyai UniversityCluj NapocaRomania
  4. 4.Taps Old RectoryChristiansfeldDenmark
  5. 5.Laboratoire d’Ecologie, Systématique et Evolution, CNRS UMR 8079Université Paris-SudOrsay CedexFrance

Personalised recommendations