Evolutionary Biology

, Volume 43, Issue 1, pp 1–11 | Cite as

The Hybrid Origin of “Modern” Humans

  • Rebecca Rogers Ackermann
  • Alex Mackay
  • Michael L. Arnold
Synthesis Paper

Abstract

Recent genomic research has shown that hybridization between substantially diverged lineages is the rule, not the exception, in human evolution. However, the importance of hybridization in shaping the genotype and phenotype of Homo sapiens remains debated. Here we argue that current evidence for hybridization in human evolution suggests not only that it was important, but that it was an essential creative force in the emergence of our variable, adaptable species. We then extend this argument to a reappraisal of the archaeological record, proposing that the exchange of cultural information between divergent groups may have facilitated the emergence of cultural innovation. We discuss the implications of this Divergence and Hybridization Model for considering the taxonomy of our lineage.

Keywords

Cultural and biological modernity Hybridization Frontiers Neanderthals Denisovans 

References

  1. Abi-Rached, L., Jobin, M. J., Kulkarni, S., McWhinnie, A., Dalva, K., Gragert, L., et al. (2011). The shaping of modern human immune systems by multiregional admixture with archaic humans. Science, 334(6052), 89–94.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Ackermann, R. R. (2010). Phenotypic traits of primate hybrids: Recognizing admixture in the fossil record. Evolutionary Anthropology, 19, 258–270.CrossRefGoogle Scholar
  3. Ackermann, R. R., Rogers, J., & Cheverud, J. (2006). Identifying the morphological signatures of hybridization in primate and human evolution. Journal of Human Evolution, 51, 632–645.CrossRefPubMedGoogle Scholar
  4. Ackermann, R. R., Schroeder, L., Rogers, J., & Cheverud, J. (2014). Further evidence for phenotypic signatures of hybridization in descendant baboon populations. Journal of Human Evolution, 74, 54–62.CrossRefGoogle Scholar
  5. Ahern, J., Jankovic, I., Voison, J.-L., & Smith, F. (2013). Modern human origins in central Europe. In F. H. Smith & J. Ahern (Eds.), Origins of modern humans: Biology reconsidered (2nd ed., pp. 151–222). London: Wiley.CrossRefGoogle Scholar
  6. Ambrose, S. H. (1998). Chronology of the Later Stone Age and food production in East Africa. Journal of Archaeological Science, 25, 377–392.CrossRefGoogle Scholar
  7. Antón, S., Richard, P., & Aiello, L. C. (2014). Evolution of early Homo: An integrated biological perspective. Science, 345(6192), 1236828.CrossRefPubMedGoogle Scholar
  8. Arnold, M. L. (1992). Natural hybridization as an evolutionary process. Annual Reviews of Ecology and Systematics, 23, 237–261.CrossRefGoogle Scholar
  9. Arnold, M., & Meyer, A. (2006). Natural hybridization in primates: One evolutionary mechanism. Zoology, 109, 261–276.CrossRefPubMedGoogle Scholar
  10. Bar-Yosef Mayer, D. E., Vandermeersch, B., & Bar-Yosef, O. (2009). Shells and ochre in Middle Paleolithic Qafzeh Cave, Israel: Indications for modern behavior. Journal of Human Evolution, 56(3), 307–314.CrossRefPubMedGoogle Scholar
  11. Boëda, E. (1995). Levallois: A volumetric construction, methods, a technique. In H. L. Dibble & O. Bar-Yosef (Eds.), The definition and interpretation of Levallois Technology (pp. 41–68). Madison, WI: Prehistory Press.Google Scholar
  12. Botha, R. (2008). Prehistoric shell beads as a window on language evolution. Language and Communication, 28(3), 197–212.CrossRefGoogle Scholar
  13. Bouzouggar, A., Barton, N., Vanhaeren, M., d’Errico, F., Collcutt, S., Higham, T., et al. (2007). 82,000-Year-old shell beads from North Africa and implications for the origins of modern human behavior. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 9964–9969.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Braüer, G. (1981). New evidence on the transitional period between Neanderthal and modern man. Journal of Human Evolution, 10, 467–474.CrossRefGoogle Scholar
  15. Braüer, G. (1985). The “Afro-European sapiens-hypothesis” and hominid evolution in East Asia during the late Middle and Upper Pleistocene. Courier Forsch Senckenberg, 69, 145–165.Google Scholar
  16. Bräuer, G. (2008). The origin of modern anatomy: By speciation or intraspecific evolution? Evolutionary Anthropology: Issues, News, and Reviews, 17(1), 22–37.CrossRefGoogle Scholar
  17. Callaway, E. (2015). Neanderthals had outsize effect on human biology. Nature, 523, 512–513.CrossRefPubMedGoogle Scholar
  18. Cohen, R. (2007). Creolization and cultural globalization: The soft sounds of fugitive power. Globalizations, 4(2), 1–25.Google Scholar
  19. Condemi, S., Mounier, A., Giunti, P., Lari, M., Caramelli, D., & Longo, L. (2013). Possible interbreeding in late Italian Neanderthals? New data from the Mezzena Jaw (Monti Lessini, Verona, Italy). PLoS One, 8, 1–9.CrossRefGoogle Scholar
  20. Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer Associates.Google Scholar
  21. Curnoe, D., Ji, X., Taçon, P. S. C., & Yaozheng, G. (2015). Possible signatures of hominin hybridization from the early Holocene of southwest China. Scientific Reports, 5, 12408. doi:10.1038/srep12408.CrossRefPubMedGoogle Scholar
  22. Dannemann, M., Andrés, A. M., & Kelso, J. (2015). Adaptive variation in human toll-like receptors is contributed by introgression from both Neandertals and Denisovans. doi:10.1101/022699.
  23. d’Errico, F., & Stringer, C. B. (2011). Evolution, revolution or saltation scenario for the emergence of modern cultures? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1567), 1060–1069.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Ding, Q., Hu, Y., Xu, S., Wang, J., & Jin, L. (2014). Neanderthal introgression at chromosome 3p21.31 was under positive natural selection in East Asians. Molecular Biology and Evolution, 31, 683–695.CrossRefPubMedGoogle Scholar
  25. Dowling, T. E., & Secor, C. L. (1997). The role of hybridization in the evolutionary diversification of animals. Annual Review of Ecology, Evolution and Systematics, 28, 593–619.CrossRefGoogle Scholar
  26. Duarte, C., Maurício, J., Pettitt, P. B., Souto, P., Trinkaus, E., van der Plicht, H., et al. (1999). The early Upper Paleolithic human skeleton from the Abrigo do Lagar Velho (Portugal) and modern human emergence in Iberia. Proceedings of the National Academy of Sciences of the United States of America, 96, 7604–7609.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Fu, Q., Hajdinjak, M., Moldovan, O. T., Constantin, S., Mallick, S., Skoglund, P., et al. (2015). An early modern human from Romania with a recent Neanderthal ancestor. Nature, 524, 216–219.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Fu, Q., Li, H., Moorjani, P., Jay, F., Slepchenko, S. M., Bondarev, A. A., et al. (2014). Genome sequence of a 45,000-year-old modern human from western Siberia. Nature, 514(7523), 445–449.PubMedCentralCrossRefPubMedGoogle Scholar
  29. Fu, Q., Meyer, M., Gao, X., Stenzel, U., Burbano, H. A., Kelso, J., et al. (2013). DNA analysis of an early modern human from Tianyuan Cave, China. Proceedings of the National Academy of Sciences of the Unites States of America, 110, 2223–2227.CrossRefGoogle Scholar
  30. Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., et al. (2010). A draft sequence of the Neandertal genome. Science, 328(5879), 710–722.CrossRefPubMedGoogle Scholar
  31. Habgood, P. J., & Franklin, N. R. (2008). The revolution that didn’t arrive: A review of Pleistocene Sahul. Journal of Human Evolution, 55(2), 187–222.CrossRefPubMedGoogle Scholar
  32. Hammer, M. F., Woerner, A. E., Mendez, F. L., Watkins, J. C., & Wall, J. D. (2011). Genetic evidence for archaic admixture in Africa. Proceedings of the National Academy of Sciences, 108(37), 15123–15128.CrossRefGoogle Scholar
  33. Harrison, R. (1986). Pattern and process in a narrow hybrid zone. Heredity, 56, 337–349.CrossRefGoogle Scholar
  34. Herries, A. I. (2011). A chronological perspective on the Acheulian and its transition to the Middle Stone Age in southern Africa: The question of the Fauresmith. International Journal of Evolutionary Biology, 2011, 961401.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Higham, T., Douka, K., Wood, R., Bronk Ramsey, C., Brock, F., Basell, L., et al. (2014). The timing and spatiotemporal patterning of Neanderthal disappearance. Nature, 512, 306–309.CrossRefPubMedGoogle Scholar
  36. Hublin, J.-J., Talamo, S., Julien, M., David, F., Connet, N., Bodu, P., et al. (2012). Radiocarbon dates from the Grotte du Renne and Saint-Césaire support a Neandertal origin for the Châtelperronian. Proceedings of the National Academy of Sciences, 109(46), 18743–18748.CrossRefGoogle Scholar
  37. Huerta-Sánchez, E., Jin, X., Asan, B. Z., Peter, B., Vinckenbosch, N., et al. (2014). Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 512, 194–197.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Joordens, J. C. A., d’Errico, F., Wesselingh, F. P., Munro, S., de Vos, J., Wallinga, J., et al. (2015). Homo erectus at Trinil on Java used shells for tool production and engraving. Nature, 518(7538), 228–231.CrossRefPubMedGoogle Scholar
  39. Key, K. (1968). The concept of stasipatric speciation. Systematic Zoology, 17, 14–22.CrossRefGoogle Scholar
  40. Key, F. M., Teixeira, J. C., de Filippo, C., & Andrés, A. M. (2014). Advantageous diversity maintained by balancing selection in humans. Current Opinion in Genetics and Development, 29, 45–51.CrossRefPubMedGoogle Scholar
  41. Klein, R. G. (1995). Anatomy, behaviour and modern human origins. Journal of World Prehistory, 9, 167–198.CrossRefGoogle Scholar
  42. Klein, R. G. (2013). Modern human origins. General Anthropology, 20(1), 1–4.CrossRefGoogle Scholar
  43. Krause, J., Fu, Q., Good, J. M., Viola, B., Shunkov, M. V., Derevianko, A. P., & Paabo, S. (2010). The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature, 464(7290), 894–897.CrossRefPubMedGoogle Scholar
  44. Lachance, J., Vernot, B., Elbers Clara, C., Ferwerda, B., Froment, A., Bodo, J.-M., et al. (2012). Evolutionary history and adaptation from high-coverage whole-genome sequences of diverse African hunter-gatherers. Cell, 150(3), 457–469.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Leplongeon, A. (2013). Microliths in the Middle and Later Stone Age of eastern Africa: New data from Porc-Epic and Goda Buticha cave sites, Ethiopia. Quaternary International, 343, 100–116.CrossRefGoogle Scholar
  46. Lightfoot, K. G., & Martinez, A. (1995). Frontiers and boundaries in archaeological perspective. Annual Review of Anthropology, 24, 471–492.CrossRefGoogle Scholar
  47. Mackay, A., Stewart, B. A., & Chase, B. M. (2014). Coalescence and fragmentation in the late Pleistocene archaeology of southernmost Africa. Journal of Human Evolution, 72, 26–51.CrossRefPubMedGoogle Scholar
  48. Mallet, J. (2005). Hybridization as an invasion of the genome. Trends in Ecology and Evolution, 20, 229–237.CrossRefPubMedGoogle Scholar
  49. Mallet, J. (2008). Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Philosophical Transactions of the Royal Society B, 363, 2971–2986.CrossRefGoogle Scholar
  50. McBrearty, S., & Brooks, A. S. (2000). The revolution that wasn’t: a new interpretation of the origin of modern human behavior. Journal of Human Evolution, 39(5), 453–563.CrossRefPubMedGoogle Scholar
  51. McDougall, I., Brown, F. H., & Fleagle, J. G. (2005). Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature, 433(7027), 733–736.CrossRefPubMedGoogle Scholar
  52. McElreath, R., Boyd, R., & Richerson, P. J. (2003). Shared norms and the evolution of ethnic markers. Current Anthropology, 44(1), 122–130.CrossRefGoogle Scholar
  53. Mellars, P., Gravina, B., & Bronk Ramsey, C. (2007). Confirmation of Neanderthal/modern human interstratification at the Chatelperronian type-site. Proceedings of the National Academy of Sciences, 104(9), 3657–3662.CrossRefGoogle Scholar
  54. Meyer, M., Fu, Q., Aximu-Petri, A., Glocke, I., Nickel, B., Arsuaga, J.-L., et al. (2014). A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature, 505, 403–406.CrossRefPubMedGoogle Scholar
  55. Meyer, M., Kircher, M., Gansauge, M.-T., Li, H., Racimo, F., Mallick, S., et al. (2012). A high-coverage genome sequence from an archaic Denisovan individual. Science, 338, 222–226.PubMedCentralCrossRefPubMedGoogle Scholar
  56. Nosil, P., & Feder, J. L. (2012). Widespread yet heterogeneous genomic divergence. Molecular Ecology, 21, 2829–2832.CrossRefPubMedGoogle Scholar
  57. Opperman, H., & Heydenrych, B. (1990). A 22,000-year old Middle Stone Age camp site with plant food remains from the north-eastern Cape. South African Archaeological Bulletin, 45, 93–99.CrossRefGoogle Scholar
  58. Pearson, O. M. (2013). Hominin evolution in the middle-late pleistocene: Fossils, adaptive scenarios, and alternatives. Current Anthropology, 54(S8), S221–S233.CrossRefGoogle Scholar
  59. Peresani, M., Fiore, I., Gala, M., Romandini, M., & Tagliacozzo, A. (2011). Late Neanderthals and the intentional removal of feathers as evidenced from bird bone taphonomy at Fumane Cave 44 ky B.P., Italy. Proceedings of the National Academy of Sciences, 108(10), 3888–3893.CrossRefGoogle Scholar
  60. Peresani, M., Vanhaeren, M., Quaggiotoo, E., Queffelec, A., & d’Errico, F. (2013). An Ochered fossil marine shell from the Mousterian of Fumane Cave, Italy. PLoS One, 8(7), e68572.Google Scholar
  61. Pickrell, J. K., Patterson, N., Barbieri, C., Berthold, F., Gerlach, L., Guldemann, T., et al. (2012). The genetic prehistory of southern Africa. Nature Communications, 3, 1143.PubMedCentralCrossRefPubMedGoogle Scholar
  62. Prufer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., et al. (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505(7481), 43–49.PubMedCentralCrossRefPubMedGoogle Scholar
  63. Ramirez Rozzi, F., d’Errico, F., Vanhaeren, M., Grootes, P., Kerautret, B., & Dujardin, V. (2009). Cutmarked human remains bearing Neanderthal features and modern human remains associated with the Aurignacian at Les Rois. Journal of Anthropological Sciences, 87, 153–185.PubMedGoogle Scholar
  64. Reich, D., Patterson, N., Kircher, M., Delfin, F., Nandineni Madhusudan, R., Pugach, I., et al. (2011). Denisova admixture and the first modern human dispersals into southeast Asia and Oceania. The American Journal of Human Genetics, 89(4), 516–528.CrossRefPubMedGoogle Scholar
  65. Rightmire, G. P. (2009). Middle and later Pleistocene hominins in Africa and Southwest Asia. Proceedings of the National Academy of Sciences, 106(38), 16046–16050.CrossRefGoogle Scholar
  66. Rodríguez-Vidal, J., d’Errico, F., Pacheco, F. G., Blasco, R., Rosell, J., Jennings, R. P., et al. (2014). A rock engraving made by Neanderthals in Gibraltar. Proceedings of the National Academy of Sciences, 111(37), 13301–13306.CrossRefGoogle Scholar
  67. Rougier, H., Milota, Ş., Rodrigo, R., Gherase, M., Sarcinǎ, L., Moldovan, O., et al. (2007). Peştera cu Oase 2 and the cranial morphology of early modern Europeans. Proceedings of the National Academy of Sciences, 104(4), 1165–1170.CrossRefGoogle Scholar
  68. Sadr, K. (2003). The Neolithic of Southern Africa. Journal of African History, 44(2), 195–209.CrossRefGoogle Scholar
  69. Sankararaman, S., Mallick, S., Dannemann, M., Prufer, K., Kelso, J., Paabo, S., et al. (2014). The genomic landscape of Neanderthal ancestry in present-day humans. Nature, 507(7492), 354–357.PubMedCentralCrossRefPubMedGoogle Scholar
  70. Sankararaman, S., Patterson, N., Li, H., Pääbo, S., & Reich, D. (2012). The date of interbreeding between Neandertals and modern humans. PLoS Genetics, 8(10), e1002947.PubMedCentralCrossRefPubMedGoogle Scholar
  71. Seehausen, O. (2004). Hybridization and adaptive radiation. Trends in Ecology and Evolution, 19, 198–207.CrossRefPubMedGoogle Scholar
  72. Seehausen, O., Butlin, R., Keller, I., Wagner, C., Boughman, J., Hohenlohe, P., et al. (2014). Genomics and the origin of species. Nature Reviews Genetics, 15, 176–192.CrossRefPubMedGoogle Scholar
  73. Seguin-Orlando, A., Korneliussen, T. S., Sikora, M., Malaspinas, A.-S., Manica, A., Moltke, I., et al. (2014). Genomic structure in Europeans dating back at least 36,200 years. Science, 346(6213), 1113–1118.CrossRefPubMedGoogle Scholar
  74. Ségurel, L., & Quintana-Murci, L. (2014). Preserving immune diversity through ancient inheritance and admixture. Current Opinion in Immunology, 30, 79–84.CrossRefPubMedGoogle Scholar
  75. Slatkin, M. (1985). Gene flow in natural populations. Annual Review of Ecology and Systematics, 16, 393–430.CrossRefGoogle Scholar
  76. Smith, F. H. (2010). Species, populations, and assimilation in later human evolution. In C. S. Larsen (Ed.), A companion to biological anthropology (pp. 357–378). Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
  77. Smith, F. H. (2013). The fate of the Neandertals. Journal of Anthropological Research, 69, 167–200.CrossRefGoogle Scholar
  78. Soficaru, A., Petrea, C., Dobos, A., & Trinkaus, E. (2006). Early modern humans from the Pestera Muierii, Baia de Fier, Romania. Proceedings of the National Academy of Sciences of the United States of America, 103(46), 17196–17201.PubMedCentralCrossRefPubMedGoogle Scholar
  79. Tchernov, E. (1994). New comments on the biostratigraphy of the Middle and Upper Pleistocene of the southern Levant. In O. Bar-Yosef & R. S. Kra (Eds.), Late quaternary chronology and paleoclimates of the eastern Mediterranean (pp. 333–350). Tucson: Radiocarbon.Google Scholar
  80. Trinkaus, E. (2007). European early modern humans and the fate of the Neanderthals. Proceedings of the National Academy of Sciences, 104, 7367–7372.CrossRefGoogle Scholar
  81. Trinkaus, E. (2013). Life and Death at the Pestera cu Oase. A Setting for Modern Human Emergence in Europe. Oxford: Oxford University Press.Google Scholar
  82. Vanhaeren, M., D’Errico, F., Stringer, C., James, S. L., Todd, J. A., & Mienis, H. K. (2006). Middle Paleolithic shell beads in Israel and Algeria. Science, 312, 1785–1788.CrossRefGoogle Scholar
  83. Veeramah, K. R., & Hammer, M. F. (2014). The impact of whole-genome sequencing on the reconstruction of human population history. Nature Reviews Genetics, 15(3), 149–162.CrossRefPubMedGoogle Scholar
  84. Vernot, B., & Akey, J. M. (2014). Resurrecting surviving Neandertal lineages from modern human genomes. Science, 343(6174), 1017–1021.CrossRefPubMedGoogle Scholar
  85. Villa, P., Soriano, S., Tsanova, T., Degano, I., Higham, T. F. G., d’Errico, F., et al. (2012). Border cave and the beginning of the Later Stone Age in South Africa. Proceedings of the National Academy of Sciences, 109(33), 13208–13213.CrossRefGoogle Scholar
  86. Weaver, T. D., Roseman, C. C., & Stringer, C. B. (2007). Were neandertal and modern human cranial differences produced by natural selection or genetic drift? Journal of Human Evolution, 53(2), 135–145.CrossRefPubMedGoogle Scholar
  87. Wolpoff, M., Hawks, J., Frayer, D., & Hunley, K. (2001). Modern human ancestry at the peripheries: A test of the replacement theory. Science, 291(5502), 293–297.CrossRefPubMedGoogle Scholar
  88. Wood, B. (Ed.). (2011). Homo sapiens Linnaeus, 1758. In Wiley-Blackwell encyclopedia of human evolution (pp. 332–333). Oxford: Wiley-Blackwell.Google Scholar
  89. Wu, C.-I. (2001). The genic view of the process of speciation. Journal of Evolutionary Biology, 14, 851–865.CrossRefGoogle Scholar
  90. Wu, X.-J., Xing, S., & Trinkaus, E. (2013). An enlarged parietal foramen in the Late Archaic Xujiayao 11 neurocranium from northern China, and rare anomalies among Pleistocene Homo. PLoS One, 8(3), e59587.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Rebecca Rogers Ackermann
    • 1
  • Alex Mackay
    • 1
    • 2
  • Michael L. Arnold
    • 3
  1. 1.Department of ArchaeologyUniversity of Cape TownRondeboschSouth Africa
  2. 2.Centre for Archaeological ScienceUniversity of WollongongWollongongAustralia
  3. 3.Department of GeneticsUniversity of GeorgiaAthensUSA

Personalised recommendations