Evolutionary Biology

, Volume 43, Issue 4, pp 446–455 | Cite as

How to Rethink Evolutionary Theory: A Plurality of Evolutionary Patterns

  • Telmo PievaniEmail author
Synthesis Paper


Nature has recently depicted the empirical advancements of the theory of evolution as a confrontation between “reformists”, that claim for an urgent rethinking of the standard neo-Darwinian approach including so far neglected factors and processes, and “conservatives” who reply “all is well” about the current evolutionary research programme based on genetic variation and natural selection. The fight is mainly around genetic reductionism, but it seems inconclusive. Reformists stress very important factors, but they are still missing a coherent proposal about the architecture of the future extended evolutionary theory. Conservative react defensively, relying just on non-essential add-ons to the old and stable neo-Darwinian core. We analyze the debate and we propose an interpretation. Evolutionary biology is a rapidly expanding field. The bone of contention is how to update and extend the central core of the Darwinian legacy. We propose here the idea that what is happening in the field today is a development of the evolutionary research programme, whose structure is composed of a set of compatible and integrated evolutionary patterns. Evolutionary biology has been extended over its history by the inclusion of more and more patterns, rather than by revision to core theory. Niles Eldredge’s “Hierarchy Theory” is an example of global structure (meta-theory) aiming at incorporating and unifying the currently observed evolutionary patterns.


Evolutionary patterns Variational patterns Selective patterns Neutralistic patterns Macroevolutionary patterns Evolutionary research programme Hierarchy theory 


  1. Ayala, F. J., & Arp, R. (Eds.). (2010). Contemporary debates in philosophy of biology. New York: Wiley.Google Scholar
  2. Callaway, E. (2015). Ethiopian jawbone may mark dawn of humankind. Nature,. doi: 10.1038/nature.2015.17039.Google Scholar
  3. Carroll, S. B. (2005). Endless forms most beautiful. New York: Baror Int.Google Scholar
  4. Coyne, J. A., & Orr, A. (2004). Speciation. Sunderland (MA): Sinauer Associates.Google Scholar
  5. Eldredge, N. (1985). Unfinished synthesis. Biological hierarchies and modern evolutionary thought. New York: Columbia University Press.Google Scholar
  6. Eldredge, N. (1995). Reinventing Darwin. New York: Wiley.Google Scholar
  7. Eldredge, N. (1999). The pattern of evolution. New York: W.H. Freeman.Google Scholar
  8. Eldredge, N. (2008). Hierarchies and the sloshing bucket: Toward the unification of evolutionary biology. Evolution: Education and Outreach, 1, 10–15.Google Scholar
  9. Eldredge, N. (2015). Eternal ephemera. New York: Columbia University Press.CrossRefGoogle Scholar
  10. Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In T. J. M. Schopf (Ed.), Models in paleobiology (pp. 82–115). San Francisco: Freeman.Google Scholar
  11. Eldredge, N., & Grene, M. (1992). Interactions. The biological context of social systems. New York: Columbia University Press.Google Scholar
  12. Gould, S. J. (2002). The structure of evolutionary theory. Cambridge (MA): Harvard University Press.Google Scholar
  13. Grant, P., & Grant, R. (2008). How and why species multiply. Princeton (NJ): Princeton University Press.Google Scholar
  14. Jablonka, E., & Lamb, M. J. (2005). Evolution in four dimensions. Cambridge (MA): The MIT Press.Google Scholar
  15. Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge (UK): Cambridge University Press.CrossRefGoogle Scholar
  16. Lakatos, I. (1978). The methodology of scientific research programmes. Philosophical papers (Vol. 1). Cambridge (UK): Cambridge University Press.CrossRefGoogle Scholar
  17. Laland, K., Wray, G. A., Hoekstra, H. E., et al. (2014). Does evolutionary theory need a rethink? Nature, 514, 161–164.CrossRefPubMedGoogle Scholar
  18. Minelli, A., & Pradeu, T. (Eds.). (2014). Towards a theory of development. Oxford: Oxford University Press.Google Scholar
  19. Nei, M. (2013). Mutation-driven evolution. Oxford: Oxford University Press.Google Scholar
  20. Odling-Smee, J., Laland, K., & Feldman, M. W. (2003). Niche construction. Princeton (NJ): Princeton University Press.Google Scholar
  21. Okasha, S. (2006). Evolution and the levels of selection. Oxford: Oxford University Press.CrossRefGoogle Scholar
  22. Pagel, M., Venditti, C., & Meade, A. (2006). Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science, 314, 119–121.CrossRefPubMedGoogle Scholar
  23. Piacentini, L., Fanti, L., Specchia, V., Bozzetti, M. P., Berloco, M., Palombo, G., & Pimpinelli, S. (2014). Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma, 123, 345–354.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Pievani, T. (2012a). An evolving research programme: The structure of evolutionary theory from a Lakatosian perspective. In A. Fasolo (Ed.), The theory of evolution and its impact (pp. 211–228). New York: Springer.CrossRefGoogle Scholar
  25. Pievani, T. (2012b). Geoethics and philosophy of earth sciences: The role of geophysical factors in human evolution. Annals of Geophysics, 55(3), 349–353.Google Scholar
  26. Pievani, T. (2013a). Individuals and groups in evolution: Darwinian pluralism and the multilevel selection debate. Journal of Biosciences, 38(4), 1–7.Google Scholar
  27. Pievani, T. (2013b). Kinds of pluralism. Stephen J. Gould and the future of evolutionary theory. In G. A. Danieli, A. Minelli, & T. Pievani (Eds.), Stephen J. Gould 2002–2012: The scientific legacy (pp. 37–50). New York: Springer.CrossRefGoogle Scholar
  28. Pievani, T. (2015). Between skeptics and adaptationists: New prospects for human language evolution. Ciência & Ambiente, special issue on human evolution, Brasil (in press).Google Scholar
  29. Pievani, T., & Parravicini, A. (2015). Multi-level human evolution: Ecological patterns in hominid phylogeny. Journal of Anthropological Sciences (in press).Google Scholar
  30. Pievani, T., & Serrelli, E. (2013). Bucket thinking: The future framework for evolutionary explanation. Contrastes Revista Internacional de Filosofía, Suplemento, 18, 389–405.Google Scholar
  31. Pigliucci, M., & Müller, G. B. (Eds.). (2010). Evolution: The extended synthesis. Boston: MIT Press.Google Scholar
  32. Schmitz, R. J. (2014). The secret garden—Epigenetic alleles underlie complex traits. Science, 343, 1082–1083.CrossRefPubMedGoogle Scholar
  33. Sepkoski, D. (2012). Rereading the fossil record. The growth of paleobiology as an evolutionary discipline. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  34. Somit, A., & Peterson, S. A. (Eds.). (1992). The dynamics of evolution. Ithaca and London: Cornell University Press.Google Scholar
  35. Standen, E. M., Du, T. Y., & Larsson, H. C. E. (2014). Developmental plasticity and the origin of tetrapods. Nature, 513, 54–58.CrossRefPubMedGoogle Scholar
  36. Turner, D. (2011). Paleontology. A philosophical introduction. Cambridge (UK): Cambridge University Press.CrossRefGoogle Scholar
  37. Vrba, E. S. (Ed.). (1985). Species and speciation (p. 4). Pretoria: Transvaal Museum Monographs.Google Scholar
  38. Vrba, E. S. (2015). Role of environmental stimuli in hominid origins. In W. Henke & I. Tattersall (Eds.), Handbook of paleoanthropology (2nd ed., Vol. 3, pp. 1837–1886). Berlin-Heidelberg: Springer.CrossRefGoogle Scholar
  39. Waddington, C. H. (1959). Canalization of development and genetic assimilation of acquired characters. Nature, 183, 654–655.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Unit of Research in Philosophy of Biological Sciences, Department of BiologyUniversity of PaduaPaduaItaly

Personalised recommendations