Evolutionary Biology

, Volume 42, Issue 1, pp 20–41 | Cite as

Introduction to Evolutionary Teratology, with an Application to the Forelimbs of Tyrannosauridae and Carnotaurinae (Dinosauria: Theropoda)

Research Article

Abstract

Conceptualisation of evolution requires new inclusions, as evidenced by contributions brought by evolutionary developmental biology—the evo-devo connection. Integration of teratology in an evolutionary framework fits in this continuity. It highlights the production of developmental anomalies (more or less drastic) over evolutionary times, which become integral parts of groups and taxa. Originating in Étienne Geoffroy Saint-Hilaire’s work, the contemporary independent formulation of evolutionary teratology allows a better understanding of some anatomical structures. The limbs of tetrapods are a promising field of study as some changes in their shapes, proportions and compositions are close to malformations observed in teratology. The forelimbs condition of Tyrannosauridae and Carnotaurinae is a good example. They are theropod dinosaurs characterised by different anterior micromelias, codified following an anatomical nomenclature. An association with the knowledge from developmental biology helps to discern possible productive mechanisms of such micromelias, including the influence of developmental rates, Hox genes, growth factors and developmental pathways conserved in evolution. What is more, the case of Tyrannosauridae and Carnotaurinae imposes to use the ‘adaptive’ reasoning in a more balanced framework. Indeed, the viability and evolutionary success of an organism is the result of the equilibrium of aptitudes between its various anatomical parts interacting with the circumstances.

Keywords

Tyrannosauridae Carnotaurinae Evolutionary teratology Anterior micromelia Developmental mechanisms 

References

  1. Abzhanov, A., & Kaufman, T. C. (1999). Novel regulation of the homeotic gene Scr associated with a crustacean leg-to-maxilliped appendage transformation. Development, 126, 1121–1128.PubMedGoogle Scholar
  2. Adamska, M., MacDonald, B. T., Sarmast, Z. H., Oliver, E. R., & Meisler, M. H. (2004). En1 and Wnt7a interact with Dkk1 during limb development in the mouse. Developmental Biology, 272, 134–144.PubMedGoogle Scholar
  3. Agnolin, F. L., & Chiarelli, P. (2010). The position of claws in Naosauridae (Dinosauria: Abelisauroidea) and its implication for abelisauroid manus evolution. Paläontologishe Zeitscrift, 84, 293–300.Google Scholar
  4. Alberch, J. (1989). The logic of monsters: Evidence for internal constraint development and evolution. Geobios, 12(2), 21–57.Google Scholar
  5. Al-Qattan, M. M., Yang, Y., & Kozin, S. H. (2009). Embryology of the upper limb. Journal of Hand Surgery, 34A, 1340–1350.Google Scholar
  6. Alroy, J., & Garcia Selles, A. (2014). Measurements of Deinonychus antirrhopus, Guanlong wucaii, Dilophosaurus weitherilli, Ceratosaurus nasicornis, Ornithomimus edmonticus, Struthiomimus altus, Allosaurus fragilis, Gigantoraptor erlianensis, Herrerasaurus ischigualastensis, Acrocanthosaurus atokensis, Daspletosaurus torosus recorded in the Paleobiology database. Resource document. http://fossilworks.org. Accessed January 2014.
  7. Bakker, R. T., Williams, M., & Currie, P. J. (1988). Nanotyrannus, a new genus of pygmy tyrannosaur, from the latest Cretaceousof Montana. Hunteria, 1, 1–30.Google Scholar
  8. Bates, K. T., & Falkingham, P. L. (2012). Estimating maximum bite performance in Tyrannosaurus rex using multi-body dynamics. Biology Letters, 8, 660–664.PubMedCentralPubMedGoogle Scholar
  9. Bever, G. S., Gauthier, J. A., & Wagner, G. P. (2011). Finding the frame shift: Digit loss, developmental variability, and the origin of the avian hand. Evolution and Development, 13(3), 269–279.PubMedGoogle Scholar
  10. Bininda-Emonds, O. R. P., Jeffery, J. E., Sánchez-Villagra, M. R., Hanken, J., Colbert, M., Pieau, C., et al. (2007). Forelimb–hindlimb developmental timing changes across tetrapod phylogeny. BMC Evolutionary Biology, 7, 182.PubMedCentralPubMedGoogle Scholar
  11. Bonaparte, J. F., Novas, F. E., & Coria, R. A. (1990). Carnotaurus sastrei Bonaparte, the horned, lightly built carnosaur from the middle cretaceous of Patagonia. In Contributions in science, Natural History Museum of Los Angeles County, vol. 416, pp. 1–42.Google Scholar
  12. Boulet, A. M., & Capecchi, M. R. (2004). Multiple roles of Hoxa11 and Hoxd11 in the formation of the mammalian forelimb zeugopod. Development, 131, 299–309.PubMedGoogle Scholar
  13. Brochu, C. A. (2000). A digitally-rendered endocast for Tyrannosaurus rex. Journal of Vertebrate Paleontology, 20(1), 1–6.Google Scholar
  14. Brochu, C.A. (2003). Osteology of Tyrannosaurus rex: Insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the skull. Journal of Vertebrate Paleontology 22, Supplement to number 4.Google Scholar
  15. Brusatte, S. L., Carr, T. D., Erickson, G. M., Bever, G. S., & Norell, M. A. (2009). A long-snouted, multihorned tyrannosaurid from the Late Cretaceous of Mongolia. Proceedings of the National Academy of Sciences, 106(41), 17261–17266.Google Scholar
  16. Brusatte, S. L., Norell, M. A., Carr, T. D., Erickson, G. M., Hutchinson, J. R., Balanoff, A. M., et al. (2010). Tyrannosaur paleobiology: New research on ancient exemplar organisms. Science, 139, 1481–1485.Google Scholar
  17. Brusatte, S. L., Benson, R. B. J., & Norell, M. A. (2011). The anatomy of Dryptosaurus aquilunguis (Dinosauria: Theropoda) and a review of its Tyrannosauroid affinities. American Museum Novitates, 3717, 1–53.Google Scholar
  18. Brusatte, S. L, Carr, T. D., & Norell, M. A. (2012). The osteology of Alioramus, a gracile and long-snouted Tyrannosaurid (Dinosauria: Theropoda) from the Late Cretaceous of Mongolia. Bulletin of the American Museum of Natural History, 366, 1–197.Google Scholar
  19. Buckland, R. A., Collinson, J. M., Graham, E., Davidson, D. R., & Hill, R. E. (1998). Antagonistic effects of FGF4 on BMP induction of apoptosis and chondrogenesis in the chick limb bud. Mechanisms of Development, 71, 143–150.PubMedGoogle Scholar
  20. Burch, S. H., & Carrano, M. T. (2012). An articulated pectoral girdle and forelimb of the Abelisaurid theropod Majungasaurus crenatissimus from the Late Cretaceous of Madagascar. Journal of Vertebrate Paleontology, 32(1), 1–16.Google Scholar
  21. Burtch, R. L. (1966). Nomencalture for congenital skeletal limb deficiencies, a revision of the Frantz and O’Rahilly classification. Artificial Limbs, 10(1), 24–35.Google Scholar
  22. Carabajal, A. P. (2011a). The braincase anatomy of Carnotaurus sastrei (Theropoda: Abelisauridae) from the Upper Cretaceous of Patagonia. Journal of Vertebrate Paleontology, 31(2), 378–386.Google Scholar
  23. Carabajal, A. P. (2011b). Braincases of abelisaurid theropods from the Upper Cretaceous of north Patagonia. Palaeontology, 54(4), 793–806.Google Scholar
  24. Carbone, C., Turvey, S. T., & Biebly, J. (2011). Intra-guild competition and its implications for one of the biggest terrestrial predators, Tyrannosaurus rex. Proceedings of the Royal Society B, 278, 2682–2690.PubMedCentralPubMedGoogle Scholar
  25. Carpenter, K., & Smith, M. (2001). Forelimb osteology and biomechanics of Tyrannosaurus rex. In D. Tanke & K. Carpenter (Eds.), Mesozoic vertebrate life (pp. 90–116). Bloomington & Indianapolis: Indiana University Press.Google Scholar
  26. Carr, T. D. (1999). Carnofacial ontogeny in Tyrannosauridae (Dinosaurisa, Coelurosauria). Journal of Vertebrate Paleontology, 19(3), 497–520.Google Scholar
  27. Carr, T. D., & Williamson, T. E. (2010). Bistahieversor sealeyi, gen. et sp. nov., a new Tyrannosauroid from New Mexico and the origin of deep snouts in Tyrannosauroidea. Journal of Vertebrate Paleontology, 30(1), 1–16.Google Scholar
  28. Carr, T. D., Williamson, T. E., Britt, B., & Stadtman, K. (2011). Evidence for high taxonomic and morphologic tyrannosauroid diversity in the Late Cretaceous (Late Campanian) of the American Southwest and a new short-skulled tyrannosaurid from the Kaiparowits formation of Utah. Naturwissenschaften, 98(3), 241–246.PubMedGoogle Scholar
  29. Carrano, M. T. (2007). The appendicular skeleton of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. Journal of Vertebrate Paleontology, 27(2), 163–179.Google Scholar
  30. Carrano, M. T., & Hutchinson, J. R. (2002). Pelvic and hindlimb musculature of Tyannosaurus rex (Dinosauria: Theropoda). Journal of Morphology, 253, 207–228.PubMedGoogle Scholar
  31. Chouard, T. (2010). Evolution: Revenge of the hopeful monster. Nature, 463, 864–867.PubMedGoogle Scholar
  32. Chung, M. S. (2011). Congenital differences of the upper extremity: Classification and treatment principles. Clinics in Orthopedic Surgery, 3, 172–177.PubMedCentralPubMedGoogle Scholar
  33. Clark, J. (2009). Becoming T. rex. Science, 326, 373–374.PubMedGoogle Scholar
  34. Coria, R. A., Chiappe, L. M., & Dingus, L. (2002). A new close relative of Carnotaurus sastrei Bonaparte 1985 (Theropoda: Abelisauridae) from the late cretaceous of Patagonia. Journal of Vertebrate Paleontology, 22(2), 460–465.Google Scholar
  35. Crossley, P. H., Minowada, G., MacArthur, C. A., & Martin, G. R. (1996). Roles for FGF8 in the induction, initiation and maintenance of chick limb development. Cell, 84, 127–136.PubMedGoogle Scholar
  36. Currie, P. J. (2003a). Cranial anatomy of tyrannosaurid dinosaurs from the Late Cretaceous of Alberta, Canada. Acta Palaeontologica Polonica, 48(2), 191–226.Google Scholar
  37. Currie, P. J. (2003b). Allometric growth in tyrannosauids (Dinosauria: Theropoda) from the Upper Cretaceous of North America and Asia. Canadian Journal of Earth Sciences, 40, 651–665.Google Scholar
  38. Currie, P. J., & Carpenter, K. (2000). A new specimen of Acrocanthosaurus atokensis (Theropoda, Dinosauria) from the Lower Cretaceous Antlers formation (Lower Cretaceous, Aptian) of Oklahoma, USA. Geodiversitas, 22(2), 207–246.Google Scholar
  39. Currie, P. J., Hurum, J. H., & Sabath, K. (2003). Skull structure and evolution in tyrannosaurid dinosaurs. Acta Palaeontologica Polonica, 48(2), 227–234.Google Scholar
  40. Davis, A. P., & Capecchi, M. R. (1996). A mutational analysis ofthe 5′HoxD genes: Dissection of genetic interactions during limb development in the mouse. Development, 122, 1175–1185.PubMedGoogle Scholar
  41. Day, H. J. B. (1991). The ISO/ISPO classification of congenital limb deficiency. Prosthetics and Orthotics International, 15, 67–69.PubMedGoogle Scholar
  42. de Bakker, M. A. G., Fowler, D. D., den Oude, K., Dondrop, E. M., Garrido Navas, M. C., Horbanczuk, J. O., et al. (2013). Digit loss in archosaur evolution and the interplay between selection and constraints. Nature, 500, 445–449.PubMedGoogle Scholar
  43. Dececchi, T. A., & Larsson, C. E. (2013). Body and limb size dissociation at the origin of birds: Uncoupling allometric constraints across a macroevolutionary transition. Evolution, 67(9), 2741–2752.PubMedGoogle Scholar
  44. DePalma, R. A, I. I., Burnham, D. A., Martin, L. D., Rotschild, B. M., & Larson, P. L. (2013). Physical evidence of predatory behavior in Tyrannosaurus rex. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12560–12564.PubMedCentralPubMedGoogle Scholar
  45. Dictionnaire de l’Académie de medicine. (2013). Resource document. http://dictionnaire.academie-medecine.fr/. Accessed July 2013.
  46. Dietrich, M. R. (2003). Richard Goldschmidt: Hopeful monsters and other ‘heresies’. Nature Reviews Genetics, 4(1), 68–74.PubMedGoogle Scholar
  47. Dittrich-Reed, D. R., & Fitzpatrick, B. (2013). Transgressive hybrids as hopeful monsters. Evolutionary Biology, 40, 310–315.PubMedCentralPubMedGoogle Scholar
  48. Entin, M. A. (1959). Reconstruction of congenital abnormalities of the upper extremities. Journal of Bone and Joint Surgery, 41A(4), 681–701.Google Scholar
  49. Ezcurra, M. D., Agnolin, F. L., & Novas, F. E. (2010). An abeliusauroid dinosaur with non-atrophied manus from the Late Cretaceous Pari Aike formation of southern Patagonia. Zootaxa, 2450, 1–25.Google Scholar
  50. Favier, B., & Dollé, P. (1997). Developmental functions of mammalian Hox genes. Molecular Human Reproduction, 3(2), 115–131.PubMedGoogle Scholar
  51. Favier, B., Rijli, F. M., Fromental-Ramain, C., Fraulob, V., Chambon, P., & Dollé, P. (1996). Functional cooperation between the non-paralogous genes Hoxa-10 and Hoxd-11 in the developing forelimb and axial skeleton. Development, 122, 449–460.PubMedGoogle Scholar
  52. Fiorillo, A. R., & Tykoski, R. S. (2014). A diminutive new Tyrannosaur from the tope of the world. PLoS One, 9(3), e91287.PubMedCentralPubMedGoogle Scholar
  53. Fowler, D. W., Woodward, H. N., Freedman, E. A., Larson, P. L., & Horner, J. R. (2011). Reanalysis of “Raptorex kriegsteini”: A juvenile Tyrannosaurid dinosaur from Mongolia. PLoS One, 6(6), e21376.PubMedCentralPubMedGoogle Scholar
  54. Francis-West, P. H., Abdelfattah, A., Chen, P., Allen, C., Parish, J., Ladher, R., et al. (1999). Mechanisms of GDF-5 action during skeletal development. Development, 126, 1305–1315.PubMedGoogle Scholar
  55. Frantz, C. H., & O’Rahilly, R. (1961). Congenital skeletal limb deficiencies. The Journal of Bone and Joint Surgery, 43A(8), 1202–1224.Google Scholar
  56. Geoffroy Saint-Hilaire, É. (1822). Philosophie anatomique—Des monstruosités humaines, Ouvrage contenant une classification des monstres; une histoire raisonnée des phénomènes de la monstruosité et des faits primitifs qui la produisent; des vues nouvelles touchant la nutrition du fœtus et d’autres circonstances de son développement; et la détermination des diverses parties de l’organe sexuel, pour en démontrer l’unité de composition, non seulement chez les monstres, où l’altération des formes rend cet organe méconnaissable, mais dans les deux sexes, et, de plus, chez les oiseaux et chez les mammifères. Paris: l’auteur.Google Scholar
  57. Geoffroy Saint-Hilaire, É. (1825). Recherches sur l’organisation des gavials; Sur leurs affinités naturelles, desquelles résulte la nécessité d’une autre distribution générique, Gavialis, Teleosaurus et Steneosaurus; et sur cette question, si les Gavial (Gavialis), aujourd’hui répandus dans les parties orientales de l’Asie, descendent, par voie non interrompue de génération, des Gavials antidiluviens [sic], soit des Gavials fossiles, dits Crocodiles de Caen (Teleosaurus), soit des Gavials fossiles du Havre et de Honfleur (Steneosaurus). In Mémoires du Muséum d’Histoire Naturelle, par les professeurs de cet établissement, Tome 12 (pp. 97–155). Paris: Belin.Google Scholar
  58. Geoffroy Saint-Hilaire, É. (1826). Considérations générales sur les monstres comprenant une théorie des phénomènes de la monstruosité. Paris: Tatsu.Google Scholar
  59. Geoffroy Saint-Hilaire, I. (1832). Histoire générale et particulière des anomalies de l’organisation chez l’homme et les animaux, ouvrage comprenant des recherches sur les caractères, la classification, l’influence physiologique et pathologique, les rapports généraux, les lois et les causes des monstruosités, des variétés et des vices de conformation, ou traité de tératologie. Tome premier. Paris: Baillière.Google Scholar
  60. Geoffroy Saint-Hilaire, I. (1841). Essais de zoologie générale, ou mémoires et notices sur la zoologie générale, l’anthropologie, et l’histoire de la science. Paris: Roret.Google Scholar
  61. Giffin, E. B. (1995). Postcranial paleoneurology of the Diapsida. Journal of Zoology, 235, 389–410.Google Scholar
  62. Gilmore, C. W. (1920). Osteology of the carnivorous dinosauria in the United States National Museum, with special reference to the genera Antrodemus (Allosaurus) and Ceratosaurus. Bulletin of the National Museum 110. Washington, Government printing office.Google Scholar
  63. Glut, D. F. (2008). Tyrannosaurus rex: A century of celebrity. In P. L. Larson & K. Carpenter (Eds.), Tyrannosaurus rex, the tyrant king (pp. 398–427). Bloomington and Indianapolis: Indiana University Press.Google Scholar
  64. Gold, N. B., Westgate, M. N., & Holmes, L. B. (2011). Anatomic and etiological classification of congenital limb deficiencies. American Journal of Medical Genetics A, 155A(6), 1225–1235.Google Scholar
  65. Goldshmidt, R. (1940). The material basis of evolution. New Haven: Yale University Press.Google Scholar
  66. Gould, S. J. (1974). The origin of function of “bizarre” structures: Anter size and skull size of the “Irish elk”, Megaloceros giganteus. Evolution, 28(2), 191–220.Google Scholar
  67. Gould, S. J. (1977). The return of hopeful monsters. Natural History, 86(6), 22–30.Google Scholar
  68. Gould, S. J., & Lewontin, R. C. (1979). The Spandrels of San Marco and the Panglossian Paradigm: A critique of the adpatationist programme. Proceedings of the Royal Society of London. Series B: Biological Sciences, 205(1161), 581–598.Google Scholar
  69. Guinard, G. (2012). Evolutionary concepts meet the neck of penguins (Aves: Sphenisciformes), towards a “survival strategy” for evo-devo. Theory in Biosciences, 131(4), 231–242.PubMedGoogle Scholar
  70. Guinard, G., & Marchand, D. (2010). Modularity and complete natural homeoses in cervical vertebrae of extant and extinct penguins (Aves: Sphenisciformes). Evolutionary Biology, 37(4), 210–226.Google Scholar
  71. Guinard, G., Marchand, D., Courant, F., Gauthier-Clerc, M., & Le Bohec, C. (2010). Morphology, ontogenesis and mechanics of cervical vertebrae in four species of penguins (Aves: Spheniscidae). Polar Biology, 33(6), 807–822.Google Scholar
  72. Hall, B. K. (2002). Palaeontology and evolutionary developmental biology: A science of the nineteenth and twenty-first centuries. Palaeontology, 45(4), 647–669.Google Scholar
  73. Heslop-Harrison, J. (1952). A reconsideration of plant teratology. Phyton, 4, 19–34.Google Scholar
  74. Holtz, T. R. (2001). The phylogeny and taxonomy of the Tyrannosauridae. In D. H. Tanke & K. Carpenter (Eds.), Mesozoic vertebrate life (pp. 64–83). Bloomington and Indianapolis: Indiana University Press.Google Scholar
  75. Hone, D. E., Wang, K., Sullivan, C., Zhao, X., Chen, S., Li, D., et al. (2011). A new, large tyrannosaurine theropod from the Upper Cretaceous of China. Cretaceous Research, 32(4), 495–503.Google Scholar
  76. Huang, C., & Hales, B. F. (2009). Teratogen responsive signaling pathways in organogenesis stage mouse limbs. Reproductive Teratology, 27, 103–110.Google Scholar
  77. Huang, R., Zhi, Q., Patel, K., Wilting, J., & Christ, B. (2000). Dual origin and segmental organisation of the: Avian scapula. Development, 127, 3789–3794.PubMedGoogle Scholar
  78. Hurum, J. H., & Currie, P. J. (2000). The crushing bites of Tyrannosaurids. Journal of Vertebrate Paleontology, 20(3), 619–621.Google Scholar
  79. Hurum, J. H., & Sabath, K. (2003). Giant theropod dinosaurs from Asia and North America: Skulls of Tarbosaurus bataar and Tyrannosaurus rex compared. Acta Palontologica Polonica, 48(2), 161–190.Google Scholar
  80. Hutchinson, J. R., Bates, K. T., Molnar, J., Allen, V., & Makovicky, P. J. (2011). A computational analysis of limb and body dimensions in Tyrannosaurus rex with implication for locomotion, ontogeny and growth. PLoS One, 6(10), e26037.PubMedCentralPubMedGoogle Scholar
  81. Hutt, S., Naish, D., Martill, D. M., Barker, M. J., & Newbery, P. (2001). A preliminary account of a new tyrannosauroid theropod from the Wessex Formation (Cretaceous) of southern England. Cretaceous Research, 22, 227–242.Google Scholar
  82. Jeanty, P., & Valero, G. (2012). The assessment of the fetus with a skeletal dysplasia. Resource document. http://www.sonoworld.com/Client/Fetus/files/skeletal_eng.pdf. Accessed August 17, 2012.
  83. Jelínek, R. (2005). The contribution of new findings and ideas to the old principles of teratology. Reproductive Toxicology, 20, 295–300.PubMedGoogle Scholar
  84. Johnson, R. L., & Tabin, C. J. (1997). Molecular models for vertebrate limb development. Cell, 90, 979–990.PubMedGoogle Scholar
  85. Knell, R. J., & Sampson, S. (2011). Bizarre structures in dinosaurs: Species recognition or sexual selection? A response to Padian and Horner. Journal of Zoology, 283, 18–22.Google Scholar
  86. Kozin, S. H. (2003). Upper-extremity congenital anomalies. Bone and Joint Surgery, 85(8), 1564–1576.Google Scholar
  87. Krause, D. W., Sampson, S. D., Carano, M. T., & O’Connor, P. M. (2007). Overview of the history of discovery, taxonomy, phylogeny, and biogeography of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the late Cretaceous of Madagascar. Journal of Vertebrate Paleontology, 27 (supplement 2), 1–20.Google Scholar
  88. Kutschera, U., & Niklas, K. J. (2008). Macroevolution via secondary endosymbiosis: A Neo-Goldschmidtian view of unicellular hopeful monsters and Darwin’s primordial intermediate form. Theory in Biosciences, 127, 277–289.PubMedGoogle Scholar
  89. Lambe, L. M. (1914a). On the fore-limb of a carnivorous dinosaur from the belly river formation of Alberta, and a new genus of Ceratopsia from the same horizon, with remarks on the integument of some Cretaceous herbivorous dinosaurs. The Ottawa Naturalist, 27, 129–135.Google Scholar
  90. Lambe, L. M. (1914b). On a new genus and species of carnivorous dinosaur from the belly river formation of Alberta, with the description of the skull of Stephanosaurus marginatus from the same horizon. The Ottawa Naturalist, 28, 13–20.Google Scholar
  91. Larson, P. (2013). The validity of Nanotyrannus Lancensis (Theropoda, Lancian—Upper Maastrichtian of North America). In Society of paleontology: 73rd annual meeting, abstracts with programs, vol. 159.Google Scholar
  92. Larsson, H. C. E., & Wagner, G. P. (2003). Old morphologies misinterpreted. Trends in Ecology & Evolution, 18(1), 10.Google Scholar
  93. Lefebvre, B. (2003). Stephen J. Gould, les mitrates et les monstres. Comptes Rendus Palevol, 2, 509–522.Google Scholar
  94. Light, T. R. (1989).Congenital malformations and deformities of the hand—part A: General concepts. In J. S. Barr Jr. (Ed.), Instructional course lectures, American Academy of Orthopedic Surgeons, (Vol. 38, pp. 31–34).Google Scholar
  95. Lipkin, C., & Carpenter, K. (2008). Looking again at the forelimb of Tyrannosaurus rex. In P. Larson & K. Carpenter (Eds.), Tyrannosaurus rex, the tyrant king (pp. 166–189). Bloomington and Indianapolis: Indiana University Press.Google Scholar
  96. Lockley, M., Kuhihara, R., & Mitchell, L. (2008). Why Tyrannosaurus rex had puny arms: An integral morphodynamic solution to a simple puzzle in Theropod Paleobiology. In P. Larson & K. Carpenter (Eds.), Tyrannosaurus rex, the tyrant king (pp. 130–164). Bloomington and Indianapolis: Indiana University Press.Google Scholar
  97. Loewen, M. A., Irmis, R. B., Sertich, J. J. W., Currie, P. J., & Sampson, S. D. (2013). Tyrant dinosaur evolution tracks the rise and fall of Late Cretaceous Oceans. PLoS One, 8(11), e79420.PubMedCentralPubMedGoogle Scholar
  98. Lü, J., Yi, L., Brusatte, S. L., Yang, L., Li, H., & Liu, C. (2014). A new clade of Asian Late Cretaceous long-snouted tyrannosaurids. Nature Communications, 5, 3788.PubMedGoogle Scholar
  99. Lyons, K., & Ezaki, M. B. (2009). Molecular regulation of limb growth. Journal of Bone and Joint Surgery (Amercian Volume), 91(Supplement 4), 47–52.Google Scholar
  100. Mahler, L. (2005). Record of Abelisauridae (Dinosauria: Theropoda) from the Cenomanian of Morocco. Journal of Vertebrate Paleontology, 25(1), 236–239.Google Scholar
  101. Maleev, E. A. (1974). Gigantic carnosaurs of the family Tyrannosauridae. The Joint Soviet-Mongolian Paleontological Expedition Transactions, 1, 132–191.Google Scholar
  102. Manouvrier-Hanu, S., Holder-Espinasse, M., & Lyonnet, S. (1999). Genetics of limbs anomalies in humans. Trends if Genetics, 15(10), 409–417.Google Scholar
  103. Marsh, O. C. (1892). Restorations of Claosaurus and Ceratosaurus. American Journal of Science, 44(262), 343–349.Google Scholar
  104. Marsh, O. C. (1896). The Dinosaurs of North America. In C. D. Walcott (Ed.), Sixteenth annual report of the United States Geological Survey to the Secretary of Interior 1894–1895, part 1.—Director’s report and papers of a theoretic nature (pp. 143–468). Washington: Government Printing Office.Google Scholar
  105. Matthew, W. D., & Brown, B. (1923). Preliminary notices of skeletons and skulls of Deinodontidae from the Cretaceous of Alberta. American Museum Novitates, 89, 1–9.Google Scholar
  106. Mazzetta, G. V., Farina, R. A., & Vizcaino, S. F. (1998). On the palaebiology of the South American horned theropod Carnotaurus sastrei Bonaparte. Gaia, 15, 185–192.Google Scholar
  107. Mazzetta, G. V., Christiansen, P., & Farina, R. A. (2004). Giants and bizarre: Body size of some southern South American Cretaceous dinosaurs. Historical Biology, 16(2–4), 71–83.Google Scholar
  108. Meckel, J. F. (1815). De duplicate monstrosa commentarius. Halae & Beroloni: E. Librariis orphanothrophei Berlin: 53–54. Comment no. 49.Google Scholar
  109. Méndez, A. H. (2014a). The caudal vertebral series in abelisaurid dinosaurs. Acta Palaeontologica Polonica, 59(1), 99–107.Google Scholar
  110. Méndez, A. H. (2014b). The cervical vertebrae of the Late Cretaceous abelisaurid dinosaur Carnotaurus sastrei. Acta Palaeontologica Polonica, 59(3), 569–579.Google Scholar
  111. Middleton, K. M., & Gatesy, S. M. (2000). Theropod forelimb design and evolution. Zoological Journal of the Linnean Society, 128, 149–187.Google Scholar
  112. Moeller, C., Swindell, E. C., Kispert, A., & Eichele, G. (2003). Carboxypeptidase Z (CPZ) modulates Wnt signaling and regulates the development of skeletal elements in the chicken. Development, 130, 5103–5111.PubMedGoogle Scholar
  113. Morgan, B. A. (1997). Hox genes and embryonic development. Poultry Science, 76, 96–104.PubMedGoogle Scholar
  114. Nelson, C. E., Morgan, B. A., Burke, A. C., Laufer, E., DiManbro, E., Murtaugh, C. L., et al. (1996). Analysis of Hox gene expression in the chick limb bud. Development, 122, 1449–1466.PubMedGoogle Scholar
  115. Niederreither, K., Vermot, J., Schuhbaur, B., Chambon, P., & Dollé, P. (2002). Embryonic retinoic acid synthesis is required for forelimb growth and anteroposterior patterning in the mouse. Development, 129, 3563–3574.PubMedGoogle Scholar
  116. Novas, F. E., Ezcurra, M. D., & Agnolin, F. (2006). Humerus of a basal abelisauroid theropod from the Late Cretaceous of Patagonia. Revista del Museo Argentino de Ciencias Naturales, 8(1), 63–68.Google Scholar
  117. O’Connor, P. M. (2007). The postcranial axial skeleton of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. Journal of Paleontology, 27(Supplement to No 2), 127–162.Google Scholar
  118. Osmólska, H., & Roniewicz, E. (1970). Deinocheiridae, a new family of theropod dinosaurs. Palaeontologica Polonica, 21, 5–19.Google Scholar
  119. Osmólska, H., Roniewicz, E., & Barsbold, R. (1972). A new dinosaur, Gallimimus bullatus n.gen., n.sp. (Ornithomimidae) from the Upper Cretaceous of Mongolia. Palaeontologica Polonica, 27, 103–143.Google Scholar
  120. Ostrom, J. H. (1969). Osteology of Deinonychus antirrhopus, and unusual Theropod from the Lower Cretaceous of Montana. In Bulletin of the Peabody Museum of Natural History, (Vol. 30, pp. 1–65). New Haven, CT: Yale University.Google Scholar
  121. Padian, K., & Horner, J. R. (2011). The evolution of ‘bizarre structures’ in dinosaurs: Biomechanics, sexual selection, social selection or species recognition? Journal of Zoology, 283, 3–17.Google Scholar
  122. Panman, L., Drenth, T., Tewelscher, P., Zuniga, A., & Zeller, R. (2005). Genetic interaction between Gli3 and Alx4 during limb and craniofacial development. International Journal of Developmental Biology, 49, 443–448.PubMedGoogle Scholar
  123. Persons, W. S, I. V., & Currie, P. J. (2011). Dinosaur Speed Demon: The caudal musculature of Carnotaurus sastrei and implications for the evolution of South American Abelisaurids. PLoS One, 6(10), e25763.PubMedCentralPubMedGoogle Scholar
  124. Pol, D., & Rauhut, O. W. M. (2012). A Middle Jurassic abelisaurid from Patagonia and the early diversification of theropod dinosaurs. Proceedings of the Royal Society B, 279, 3170–3175.PubMedCentralPubMedGoogle Scholar
  125. Pratihar, S., Nath, R. P., & Kundu, J. K. (2010). Hox genes and its role in animal development. International Journal of Science and Nature, 1(2), 101–103.Google Scholar
  126. Quinlan, E. D. (2007). Anatomy and function of digit III of the Tyrannosaurus rex manus. Geological Survey of America Abstracts with Programs, 39(6), 77.Google Scholar
  127. Rallis, C., Bruneau, B. G., Del Buono, J., Seidman, C. E., Seidman, J. G., Nissim, S., et al. (2003). Txb5 is required for forelimb bud formation and continued outgrowth. Development, 130, 2741–2751.PubMedGoogle Scholar
  128. Rauhut, O. W. M. (2012). A reappraisal of a putative record of abelisauroid theropod dinosaur from the Middle Jurassic of England. Proceedings of the Geologists’ Association, 123(5), 779–786.Google Scholar
  129. Richardson, M. K., Gobes, S. M. H., Van Leeuwen, A. C., Polman, J. A. E., Pieau, C., & Sánchez-Villagra, M. R. (2009). Heterochrony in limb evolution: Developmental mechanisms and natural selection. Journal of experimental zoology (Mol Dev Evol), 312B, 639–664.Google Scholar
  130. Rieppel, O. (2001). Turtles as hopeful monsters. BioEssays, 23(11), 987–991.PubMedGoogle Scholar
  131. Rodriguez-Niedenführ, M. (2011). Control of the development of limb musculature. European Journal of Anatomy, 1, 3–9.Google Scholar
  132. Rostand, J. (1964). Etienne Geoffroy Saint-Hilaire et la tératogénèse expérimentale. Revue d’Histoire des Sciences, 17(1), 41–50.Google Scholar
  133. Ruiz, J., Torices, A., Serrano, H., & López, V. (2011). The hand structure of Carnotaurus sastrei (Theropoda, Abelisauridae): Implications for hand diversity and evolution in abelisaurids. Palaeontology, 54(6), 1271–1277.Google Scholar
  134. Russell, D. A. (1970). Tyrannosaurs from the Late Cretaceous of western Canada. National Museum of Natural Sciences, Publications in Paleontology, 1, 1–34.Google Scholar
  135. Sagai, T., Hosoya, M., Mizushina, Y., Tamura, S., & Shiroishi, T. (2004). Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development, 132, 787–803.Google Scholar
  136. Sampson, S. D., & Witmer, L. M. (2007). Craniofacial anatomy of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. Memoir of the Society of Vertebrate Paleontology, Memoir 8, 27(supplement to no 2), 32–102.Google Scholar
  137. Sampson, S. D., Carrano, M. T., & Forster, C. A. (2001). A bizarre predatory dinosaur from the Late Cretaceous of Madagascar. Nature, 409, 504–506.PubMedGoogle Scholar
  138. Sanders, R. K., & Smith, D. K. (2005). The endocranium of the theropod dinosaur Ceratosaurus studied with computed tomography. Acta Palaeontologica Polpnica, 50(3), 601–616.Google Scholar
  139. Savaliev, S. V., & Alifanov, V. R. (2007). A new stdy of the brain of the predatory dinosaur Tarbosaurus bataar (Theropoda, Tyrannosauridae). Paleontological Journal, 41(3), 282–289.Google Scholar
  140. Schierhorn, H. (1984). Johann Friedrich Meckel, Jr. as founder of scientific teratology. Gegenbaurs Morphologisches Jahrbuch, 130(3), 399–439.PubMedGoogle Scholar
  141. Schwabe, G. C., Tinschert, S., Buschow, C., Meinecke, P., Wolff, G., Gillesen-Kaesbach, G., et al. (2000). Distinct mutations in the receptor tyrosine kinase gene ROR2 cause brachydactyly type B. American Journal of Human Genetics, 67, 822–831.PubMedCentralPubMedGoogle Scholar
  142. Schwartz, N. B., & Domowicz, M. (2002). Chondrodysplasias due to proteoglycan defect. Glycobiology, 12(4), 57–68.Google Scholar
  143. Senter, P. (2010). Vestigial skeletal structures in dinosaurs. Journal of Zoology, 280, 60–71.Google Scholar
  144. Senter, P., & Parrish, J. M. (2006). Forelimb function in the theropod dinosaur Carnotaurus sastrei, and its behavioral implications. PaleoBios, 26(3), 7–17.Google Scholar
  145. Sereno, P. C., Beck, A. L., Dutheil, D. B., Gado, B., Larsson, H. C. E., Lyon, G. H., et al. (1998). A long-snouted predatory dinosaur from Africa and the evolution of spinosaurids. Science, 282, 1298–1302.PubMedGoogle Scholar
  146. Sereno, P. C., & Brusatte, S. L. (2009). Comparative assessment of Tyrannosaurid interrelationships. Journal of Systematic Palaeontology, 7(4), 455–470.Google Scholar
  147. Sereno, P. C., Wilson, J. A., & Conrad, J. L. (2004). New dinosaurs link southern landmasses in the Mid-Cretaceous. Proceedings of the Royal Society of London B, 271(1546), 1325–1330.Google Scholar
  148. Sereno, P. C., Tan, L., Brusatte, S. L., Kriegstein, H. J., Zhao, X., & Cloward, K. (2009). Tyrannosaurid skeletal design first evolved at small body size. Science, 326, 418–422.PubMedGoogle Scholar
  149. Settle, S. H, Jr, Rountree, R. B., Sinha, A., Thackler, A., Higgins, K., & Kingsley, D. M. (2003). Multiple joints and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Developmental Biology, 254, 116–130.PubMedGoogle Scholar
  150. Shum, L., Coleman, C. M., Hatakeyama, Y., & Tuan, R. S. (2003). Morphogenesis and dysmorphogenesis of the appendicular skeleton. Birth defects research Part C, 69, 102–122.Google Scholar
  151. Snivelly, E., Henderson, D. M., & Phillips, D. S. (2006). Fused and vaulted nasals of tyrannosaurids dinosaurs: Implications for cranial strength and feeding mechanics. Acta Paleontologica Polonica, 51(3), 435–454.Google Scholar
  152. Snively, E., & Russell, A. P. (2007a). Functional variation of neck muscles and their relation to feeding style in Tyrannosauridae and other large theropod dinosaurs. The Anatomical Record, 290, 934–957.PubMedGoogle Scholar
  153. Snively, E., & Russell, A. P. (2007b). Craniocervical feeding dynamics in Tyrannosaurus rex. Paleobiology, 33(4), 610–638.Google Scholar
  154. Swanson, A. B. (1976). A classification for congenital limb malformations. Journal of Hand Surgery (American Volume), 1(1), 8–22.Google Scholar
  155. Tayel, S. M., Fawzia, M. M., Al-Nageeb, N. A., Gouda, S., Al Awadi, S. A., & Naquib, K. K. (2005). A morpho-etiological description of congenital limb anomalies. Annals of Saudi Medicine, 25(3), 219–227.PubMedGoogle Scholar
  156. Theißen, G. (2006). The proper place of hopeful monsters in evolutionary biology. Theory in Biosciences, 124, 349–369.PubMedGoogle Scholar
  157. Theißen, G. (2009). Saltational evolution: Hopeful monsters are here to stay. Theory in Biosciences, 128, 43–51.PubMedGoogle Scholar
  158. Tortosa, T., Buffetaut, E., Vialle, N., Dutour, Y., Turini, E., & Cheylan, G. (2014). A new abelisaurid dinosaur from the Late Cretaceous of southern France: Palaeogeographical implications. Annales de Paléontologie, 100, 63–86.Google Scholar
  159. Towers, M., Mahood, R., Yin, Y., & Tickle, C. (2008). Integration of growth and specification in the chick wing digit-patterning. Nature, 452(7189), 882–886.PubMedGoogle Scholar
  160. Tsuhiji, T., Watabe, M., Togtbaatar, K., Tsubamoto, T., Barsbold, R., Suzuki, S., et al. (2011). Cranial osteology of a juvenile specimen of Tarbosaurus bataar (Theropoda, Tyrannosauridae) from the Nemegt formation (Upper Cretaceous) of Bugin Stav, Mongolia. Journal of Vertebrate Paleontology, 31(3), 1–21.Google Scholar
  161. Valasek, P., Theis, S., DeLaurier, A., Hinits, Y., Luke, G. N., Otto, A. M., et al. (2011). Cellular and molecular investigations into the development of the pectoral girdle. Developmental Biology, 357(1), 108–116.PubMedGoogle Scholar
  162. Vargas, A. O. (2002). La extrema reduccion del radio y ulna en la evolucion de Carnotaurus sastrei: Possible perdida de función de los genes Hoxa11 y Hoxd11. Ameghinaina 39, supplement, XVIII Jornades Argentinas de Paleontologia de Vertebrados, Resumenes p. 17.Google Scholar
  163. Vargas, A. O., & Fallon, J. F. (2005). Birds have dinosaur wings: The molecular evidence. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 340B(1), 86–90.Google Scholar
  164. Vargas, A. O., & Wagner, G. P. (2009). Frame-shifts of digit identity in bird evolution and Cyclopamine-treated wings. Evolution and development, 11(2), 163–169.PubMedGoogle Scholar
  165. Vargas, A. O., Kohlsdorf, T., Fallon, J. F., VandenBrooks, J., & Wagner, G. P. (2008). The evolution of HoxD-11 expression in the bird wing: Insights from Alligator mississipiensis. PLoS One, 3(10), e3325.PubMedCentralPubMedGoogle Scholar
  166. Vargas, A. O., Wagner, G. P., & Gauthier, J. A. (2009). Limusaurus and bird digit identity. Nature Precedings online resource. http://precedings.nature.com/documents/3828/version/1/files/npre20093828-1.pdf.
  167. Vasiliauskas, D., Laufer, E., & Stern, C. D. (2003). A role for hairy1 in regulating chick limb bud growth. Developmental Biology, 262, 94–106.PubMedGoogle Scholar
  168. Vogel, A., Rodriguez, C., & Izpisua-Belmonte, J. C. (1996). Involvment of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development, 122, 1737–1750.PubMedGoogle Scholar
  169. Vogt, T. F., & Duboule, D. (1999). Antagonists go out on a limb. Cell, 99, 563–566.PubMedGoogle Scholar
  170. Wagner, G. P., & Gauthier, J. A. (1999). 1, 2, 3 = 2, 3, 4: A solution to the problem of the homology of the digits in the avian hand. Proceedings of the National Academy of Sciences of United States of America, 96, 5111–5116.Google Scholar
  171. Williams, S. (2011). A new subadult Tyrannosaurus rex and a reassessment of ontogenetic and phylogenetic changes in Tyrannosauroid forelimb proportions. Geological Society of America Abstracts with Programs, 43(1), 120.Google Scholar
  172. Wilson, J. A., Sereno, P. C., Srivastava, S., Bhatt, D. K., Khosla, A., & Sahni, A. (2003). A new Abelisaurid (Dinosauria, Theropoda) from the Lameta formation (Cretaceous, Maastrichtian) of India. Contribution from the museum of paleontology, the Unviversity of Michigan, 31(1), 1–42.Google Scholar
  173. Witmer, L. M., & Ridgely, R. C. (2009). New insights into the brain, braincase and ear region of Tyrannosaurs (Dinosauria, Theropoda), with implications for sensory organization and behavior. The Anatomical Record, 292, 1266–1296.PubMedGoogle Scholar
  174. Woods, C. G., Stricker, S., Seemann, P., Stern, R., Cox, J., Sherridan, E., et al. (2006). Mutations in WNT7A cause a range of limb malformations, including Fuhrmann syndrome and Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome. The American Journal of Human Genetics, 79(2), 401–408.Google Scholar
  175. Xu, X., Norell, M. A., Kuang, X., Wang, X., Zhao, Q., & Jia, C. (2004). Basal tyrannosauroids from China and evidence for protofeathers in tyrannosauroids. Nature, 431, 680–684.PubMedGoogle Scholar
  176. Xu, X., Clark, J. M., Forster, C. A., Norell, M. A., Erickson, G. M., Eberth, D. A., et al. (2006). A basal tyrannosauroid dinosaur from the Late Jurassic of China. Nature, 439, 715–718.PubMedGoogle Scholar
  177. Xu, X., Clark, J. M., Mo, J., Choiniere, J., Forster, C. A., Erikson, G. M., et al. (2009). A Jurassic ceratosaur from China helps clarify avian digital homologies. Nature, 459, 940–944.PubMedGoogle Scholar
  178. Yang, Y., & Kozin, S. H. (2009). Cell signaling regulation of vertebrate limb growth and patterning. The Journal of Bone and Joint Surgery, 91(Supplement 4), 76–80.PubMedCentralPubMedGoogle Scholar
  179. Young, N. M., Wagner, G. P., & Hallgrimsson, B. (2010). Development and evolvability of human limbs. Proceedings of the National Academy of Sciences of United States of America, 107(8), 3400–3405.Google Scholar
  180. Zákány, J., & Duboule, D. (2007). The role of Hox genes during vertebrate limb development. Current Opinion in Genetics & Development, 17, 359–366.Google Scholar
  181. Zákány, J., Fromental-Romain, C., Warot, X., & Duboule, D. (1997). Regulation of number and size of digits by posterior Hox genes: A dose-dependent mechanism with potential evolutionary implications. Proceedings of the National Academy of Sciences of United States of America, 94, 13695–13700.Google Scholar
  182. Zeller, R., López-Rios, J., & Zuniga, A. (2009). Vertebrate limb bud development: Moving towards integrative analysis of organogenesis. Nature Reviews Genetics, 10, 845–858.PubMedGoogle Scholar
  183. Zhang, Z., Verheyden, J. M., Hassell, J. A., & Sun, X. (2009). FGF-regulated Etv genes are essential for repressing Shh expression in mouse limb buds. Developmental Cell, 16, 607–613.PubMedCentralPubMedGoogle Scholar
  184. Zuniga, A., Zeller, R., & Probst, S. (2012). The molecular basis of human congenital limb anomalies. Wiley Interdisciplinary Reviews: Developmental Biology, 1(6), 803–822.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.DijonFrance

Personalised recommendations