Evolutionary Biology

, Volume 41, Issue 4, pp 619–636 | Cite as

Quantitative Genetics and Modularity in Cranial and Mandibular Morphology of Calomys expulsus

  • Guilherme Garcia
  • Erika Hingst-Zaher
  • Rui Cerqueira
  • Gabriel Marroig
Research Article


Patterns of genetic covariance between characters (represented by the covariance matrix \({\varvec{G}}\)) play an important role in morphological evolution, since they interact with the evolutionary forces acting over populations. They are also expected to influence the patterns expressed in their phenotypic counterparts \(({\varvec{P}})\), because of limits imposed by multiple developmental and functional restrictions on the genotype/phenotype map. We have investigated genetic covariances in the skull and mandible of the vesper mouse (Calomys expulsus) in order to estimate the degree of similarity between genetic and phenotypic covariances and its potential roots on developmental and functional factors shaping those integration patterns. We use a classic ad hoc analysis of morphological integration based on current state of art of developmental/functional factors during mammalian ontogeny and also applied a novel methodology that makes use of simulated evolutionary responses. We have obtained \({\varvec{P}}\) and \({\varvec{G}}\) that are strongly similar, for both skull and mandible; their similarity is achieved through the spatial and temporal organization of developmental and functional interactions, which are consistently recognized as hypothesis of trait associations in both matrices.


Morphological integration Modularity G-matrix  Cheverud’s Conjecture Genotype/phenotype map 



We would like to thank N. P. Barros, A. M. Marcondes, F. Almeida, L. Araripe, J. M. Freschi for help with lab work; F. A. Machado, D. Melo, and two anonymous reviewers for comments on early drafts. We also thank D. Runcie and S. Murkherjee for help with their BSFG model codes. This work has been supported by grants from CNPq (Conselho Nacional de Pesquisa e Desenvolvimento), FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro), FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), MMA (Ministério do Meio Ambiente) and MCT (Ministério de Ciência e Tecnologia).

Supplementary material

11692_2014_9293_MOESM1_ESM.pdf (572 kb)
Supplementary material 1 (pdf 572 KB)


  1. Adams, D. C., Cardini, A., Monteiro, L. R., O’Higgins, P., & Rohlf, F. J. (2011). Morphometrics and phylogenetics: Principal components of shape from cranial modules are neither appropriate nor effective cladistic characters. Journal of Human Evolution, 60(2), 240–243. doi: 10.1016/j.jhevol.2010.02.003.PubMedCrossRefGoogle Scholar
  2. Almeida, F. C., Bonvicino, C. R., & Cordeiro-Estrela, P. (2007). Phylogeny and temporal diversification of calomys (rodentia, sigmodontinae): Implications for the biogeography of an endemic genus of the open/dry biomes of South America. Molecular Phylogenetics and Evolution, 42(2), 449–466. doi: 10.1016/j.ympev.2006.07.005.PubMedCrossRefGoogle Scholar
  3. Atchley, W. R., & Hall, B. K. (1991). A model for development and evolution of complex morphological structures. Biological Reviews, 66, 101–157.PubMedCrossRefGoogle Scholar
  4. Berner, D. (2012). How much can the orientation of g’s eigenvectors tell us about genetic constraints? Ecology and Evolution, 2(8), 1834–1842. doi: 10.1002/ece3.306.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Berner, D., Kaeuffer, R., Grandchamp, A. C., Raeymaekers, J. A. M., Räsänen, K., & Hendry, A. P. (2011). Quantitative genetic inheritance of morphological divergence in a lake-stream stickleback ecotype pair: Implications for reproductive isolation. Journal of Evolutionary Biology, 1–9. doi: 10.1111/j.1420-9101.2011.02330.x.
  6. Bonvicino, C., Lima, J., & Almeida, F. (2003). A new species of calomys waterhouse (rodentia, Sigmodontinae) from the cerrado of central brazil. Revista Brasileira de Zoologia, 20(2), 301–307.CrossRefGoogle Scholar
  7. Bonvicino, C. R., & Almeida, F. C. (2000). Karyotype, morphology and taxonomic status of calomys expulsus (rodentia: Sigmodontinae). Mammalia, 64, 339–351.CrossRefGoogle Scholar
  8. Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge: Cambridge University Press.Google Scholar
  9. Bookstein, F. L., Chernoff, B., Elder, R., & Strauss, R. (1985). Morphometrics in evolutionary biology. Philadelphia: The Academy of Natural Sciences of Philadelphia.Google Scholar
  10. Cheverud, J. M. (1984). Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology, 110, 155–172.PubMedCrossRefGoogle Scholar
  11. Cheverud, J. M. (1988). A comparison of genetic and phenotypic correlations. Evolution, 42(5), 958–968.CrossRefGoogle Scholar
  12. Cheverud, J. M. (1995). Morphological integration in the saddle-back tamarin (Saguinus fuscicollis) cranium. American Naturalist, 145(1), 63–89.CrossRefGoogle Scholar
  13. Cheverud, J. M. (1996). Developmental integration and the evolution of pleiotropy. American Zoology, 36, 44–50.Google Scholar
  14. Cheverud, J. M. (2006). Modular pleiotropic effects of quantitative trait loci on morphological traits. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (1st ed., pp. 132–153). Chicago: The University of Chicago Press.Google Scholar
  15. Cheverud, J. M., & Marroig, G. (2007). Comparing covariance matrices: Random skewers method compared to the common principal components model. Genetics and Molecular Biology, 30, 461–469. doi: 10.1590/S1415-47572007000300027.CrossRefGoogle Scholar
  16. Cheverud, J. M., Routman, E. J., & Irschick, D. J. (1997). Pleiotropic effects of individual gene loci on mandibular morphology. Evolution, 51(6), 2006–2016.CrossRefGoogle Scholar
  17. Cheverud, J. M., Wagner, G. P., & Dow, M. M. (1989). Methods for the comparative analysis of variation patterns. Evolution, 38(3), 201–213.Google Scholar
  18. Dochtermann, N. A. (2011). Testing cheverud’s conjecture for behavioral correlations and behavioral syndromes. Evolution, 65(6), 1814–1820. doi: 10.1111/j.1558-5646.2011.01264.x.PubMedCrossRefGoogle Scholar
  19. Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis. New York: Wiley.Google Scholar
  20. Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Harlow, Essex: Addison Wesley Longman.Google Scholar
  21. Franz-Odendaal, T. A. (2011). Epigenetics in bone and cartilage development. In B. Hallgrímsson & B. K. Hall (Eds.), Epigenetics: Linking genotype and phenotype in development and evolution (1st ed., pp. 195–220). Oakland, CA: University of California Press.Google Scholar
  22. Hallgrímsson, B., Jamniczky, H., Young, N. M., Rolian, C., Parsons, T. E., Boughner, J. C., et al. (2009). Deciphering the palimpsest: Studying the relationship between morphological integration and phenotypic covariation. Evolutionary Biology, 36(4), 355–376. doi: 10.1007/s11692-009-9076-5.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hallgrímsson, B., & Lieberman, D. E. (2008). Mouse models and the evolutionary developmental biology of the skull. Integrative and Comparative Biology, 48(3), 373–384. doi: 10.1093/icb/icn076.PubMedCrossRefGoogle Scholar
  24. Hansen, T. F., & Houle, D. (2008). Measuring and comparing evolvability and constraint in multivariate characters. Journal of Evolutionary Biology, 21(5), 1201–1219. doi: 10.1111/j.1420-9101.2008.01573.x.PubMedCrossRefGoogle Scholar
  25. Herring, S. W. (2011). Muscle-bone interactions and the development of skeletal phenotype. In B. Hallgrímsson & B. K. Hall (Eds.), Epigenetics: Linking genotype and phenotype in development and evolution (1st ed., pp. 221–237). Oakland, CA: University of California Press.Google Scholar
  26. Hershkovitz, P. (1962). Evolution of neotropical cricetine rodents (muridae) with special reference to the phyllotine group. Fieldiana: Zoology, 46, 1–524.Google Scholar
  27. Hill, W. G., & Thompson, R. (1978). Probabilities of non-positive definite between-group or genetic covariance matrices. Biometrics, 34(3), 429–439.CrossRefGoogle Scholar
  28. Klingenberg, C. P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology, Evolution, and Systematics, 39(1), 115–132. doi: 10.1146/annurev.ecolsys.37.091305.110054.CrossRefGoogle Scholar
  29. Klingenberg, C. P., & Leamy, L. J. (2001). Quantitative genetics of geometric shape in the mouse mandible. Evolution, 55, 2342–2352.PubMedCrossRefGoogle Scholar
  30. Klingenberg, C. P., Leamy, L. J., & Cheverud, J. M. (2004). Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible. Genetics, 166, 1909–1921.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Krupinski, P., Chickarmane, V., & Peterson, C. (2011). Simulating the mammalian blastocyst-molecular and mechanical interactions pattern the embryo. PLoS Computational Biology, 7(5), e1001,128. doi: 10.1371/journal.pcbi.1001128.CrossRefGoogle Scholar
  32. Lande, R. (1979). Quantitative genetic analysis of multivariate evolution applied to brain: body size allometry. Evolution, 33(1), 402–416.CrossRefGoogle Scholar
  33. Lande, R. (1980). The genetic covariance between characters maintained by pleiotropic mutations. Genetics, 94, 203–215.PubMedCentralPubMedGoogle Scholar
  34. Leamy, L. J., Routman, E. J., & Cheverud, J. M. (1999). Quantitative trait loci for early and late developing skull characters in mice: A test of the genetic independence model of morphological integration. The American Naturalist, 153, 201–214. doi: 10.1086/303165.CrossRefGoogle Scholar
  35. Lessels, C. M., & Boag, P. T. (1987). Unrepeatable repeatabilities: A common mistake. The Auk, 2, 116–121.CrossRefGoogle Scholar
  36. Linde, Kvd, & Houle, D. (2009). Inferring the nature of allometry from geometric data. Evolutionary Biology, 36(3), 311–322. doi: 10.1007/s11692-009-9061-z.CrossRefGoogle Scholar
  37. Lynch, M., & Walsh, B. (1998). Genetics and analysis of quantitative traits. Sunderland: Sinauer Associates.Google Scholar
  38. Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–220.PubMedGoogle Scholar
  39. Marroig, G., & Cheverud, J. M. (2001). A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of new world monkeys. Evolution, 55(12), 2576–2600.PubMedCrossRefGoogle Scholar
  40. Marroig, G., & Cheverud, J. M. (2005). Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in new world monkeys. Evolution, 59(5), 1128–1142.PubMedCrossRefGoogle Scholar
  41. Marroig, G., de Vivo, M., & Cheverud, J. M. (2004). Cranial evolution in sakis (Pithecia, Platyrrhini) II: Evolutionary processes and morphological integration. Journal of Evolutionary Biology, 17(1), 144–155. doi: 10.1046/j.1420-9101.2003.00653.x.PubMedCrossRefGoogle Scholar
  42. Marroig, G., Melo, D. A. R., & Garcia, G. (2012). Modularity, noise and natural selection. Evolution, 66(5), 1506–1524. doi: 10.1111/j.1558-5646.2011.01555.x.PubMedCrossRefGoogle Scholar
  43. Marroig, G., Shirai, L. T., Porto, A., de Oliveira, F., & de Conto, V. (2009). The evolution of modularity in the mammalian skull II: Evolutionary consequences. Evolutionary Biology, 36(1), 136–148. doi: 10.1007/s11692-009-9051-1.CrossRefGoogle Scholar
  44. Marroig, G., Melo, D., Porto, A., Sebastião, H., & Garcia, G. (2011). Selection response decomposition (SRD): A new tool for dissecting differences and similarities between matrices. Evolutionary Biology, 38(2), 225–241. doi: 10.1007/s11692-010-9107-2.CrossRefGoogle Scholar
  45. Martínez-Abadías, N., Esparza, M., Sjøvold, T., González-José, R., Hernández, M., & Klingenberg, C.P. (2011). Pervasive genetic integration directs the evolution of human skull shape. Evolution, 66(4), 1010–1023. doi: 10.5061/dryad.12g3c7ht.
  46. Márquez, E. J., Cabeen, R., Woods, R. P., & Houle, D. (2012). The measurement of local variation in shape. Evolutionary Biology, 39(3), 419–439. doi: 10.1007/s11692-012-9159-6.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Meyer, K. (2007). WOMBAT: A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). Journal of Zhejiang University Science B, 8(11), 815–821. doi: 10.1631/jzus.2007.B0815.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Meyer, K., & Kirkpatrick, M. (2008). Perils of parsimony: Properties of reduced-rank estimates of genetic covariance matrices. Genetics, 180(2), 1153–1166. doi: 10.1534/genetics.108.090159.PubMedCentralPubMedCrossRefGoogle Scholar
  49. Mezey, J. G., Cheverud, J. M., & Wagner, G. P. (2000). Is the genotype/phenotype map modular? A statistical approach using mouse quantitative trait loci data. Genetics, 156, 305–311.PubMedCentralPubMedGoogle Scholar
  50. Mitteroecker, P. (2009). The developmental basis of variational modularity: Insights from quantitative genetics, morphometrics, and developmental biology. Evolutionary Biology, 36(4), 377–385. doi: 10.1007/s11692-009-9075-6.CrossRefGoogle Scholar
  51. Mitteroecker, P., & Bookstein, F. L. (2007). The conceptual and statistical relationship between modularity and morphological integration. Systematic Biology, 56(5), 818–836. doi: 10.1080/10635150701648029.PubMedCrossRefGoogle Scholar
  52. Olson, E., & Miller, R. (1958). Morphological integration. Chicago: University of Chicago Press.Google Scholar
  53. Polly, P. D. (2008). Developmental dynamics and g-matrices: Can morphometric spaces be used to model phenotypic evolution? Evolutionary Biology, 35(2), 83–96. doi: 10.1007/s11692-008-9020-0.CrossRefGoogle Scholar
  54. Porto, A., Oliveira, F. B., Shirai, L. T., de Conto, V., & Marroig, G. (2009). The evolution of modularity in the mammalian skull i: Morphological integration patterns and magnitudes. Evolutionary Biology, 36(1), 118–135.CrossRefGoogle Scholar
  55. Porto, A., Shirai, L. T., de Oliveira, F. B., & Marroig, G. (2013). Size variation, growth strategies, and the evolution of modularity in the mammalian skull. Evolution, 67(11), 3305–3322. doi: 10.1111/evo.12177.PubMedCrossRefGoogle Scholar
  56. R Core Team (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  57. Ramaesh, T., & Bard, J. B. L. (2003). The growth and morphogenesis of the early mouse mandible: A quantitative analysis. Journal of Anatomy, 203, 213–222. doi: 10.1046/j.1469-7580.2003.00210.x.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Reusch, T., & Blanckenhorn, W. U. (1998). Quantitative genetics of the dung fly sepsis cynipsea: Cheverud’s conjecture revisited. Heredity, 81, 111–119.CrossRefGoogle Scholar
  59. Roff, D. A. (1995). The estimation of genetic correlations from phenotypic correlations: A test of cheverud’s conjecture. Heredity, 74, 481–490.CrossRefGoogle Scholar
  60. Roff, D. A. (1997). Evolutionary quantitative genetics. New York: Chapman & Hall.CrossRefGoogle Scholar
  61. Roff, D. A., & Fairbairn, D. J. (2011). Path analysis of the genetic integration of traits in the sand cricket: a novel use of BLUPs. Journal of Evolutionary Biology, 1–13. doi: 10.1111/j.1420-9101.2011.02315.x.
  62. Rohlf, F. J. (2006). tpsDig2, version 2.6. Department of Ecology and Evolution. Stony Brook, New York: SUNY.Google Scholar
  63. Roseman, C. C., Kenny-Hunt, J. P., & Cheverud, J. M. (2009). Phenotypic integration without modularity: Testing hypotheses about the distribution of pleiotropic quantitative trait loci in a continuous space. Evolutionary Biology, 36(3), 282–291. doi: 10.1007/s11692-009-9067-6.CrossRefGoogle Scholar
  64. Runcie, D. E., & Mukherjee, S. (2013). Dissecting high-dimensional phenotypes with bayesian sparse factor analysis of genetic covariance matrices. Genetics, 194(3), 753–767. doi: 10.1534/genetics.113.151217.PubMedCentralPubMedCrossRefGoogle Scholar
  65. Schluter, D. (1996). Adaptive radiation along genetic lines of least resistance. Evolution, 50(5), 1766–1774.CrossRefGoogle Scholar
  66. Shaw, R. G. (1987). Maximum-likelihood approaches applied to quantitative genetics of natural populations. Evolution, 41, 812–826.CrossRefGoogle Scholar
  67. Shirai, L. T., & Marroig, G. (2010). Skull modularity in neotropical marsupials and monkeys: Size variation and evolutionary constraint and flexibility. Journal of experimental zoology Part B, Molecular and developmental evolution, 314B(June), 663–683. doi: 10.1002/jez.b.21367.CrossRefGoogle Scholar
  68. Steppan, S. J., Adkins, R., & Anderson, J. (2004). Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Systematic Biology, 53, 533–553.PubMedCrossRefGoogle Scholar
  69. Steppan, S. J., Phillips, P. C., & Houle, D. (2002). Comparative quantitative genetics: Evolution of the g matrix. Trends in Ecology and Evolution, 17, 320–327.CrossRefGoogle Scholar
  70. Theobald, D. L., & Wuttke, D. S. (2006). Empirical bayes hierarchical models for regularizing maximum likelihood estimation in the matrix gaussian procrustes problem. Proceedings of the National Academy of Sciences, 103(49), 18,521–18,527. doi: 10.1073/pnas.0508445103.CrossRefGoogle Scholar
  71. Tiedemann, H. B., Schneltzer, E., Zeiser, S., Hoesel, B., Beckers, J., Przemeck, G. K. H., et al. (2012). From dynamic expression patterns to boundary formation in the presomitic mesoderm. PLoS Computational Biology, 8(6), e1002,586. doi: 10.1371/journal.pcbi.1002586.CrossRefGoogle Scholar
  72. Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London, 237(641), 37–72.CrossRefGoogle Scholar
  73. Wagner, G. P. (1984). On the eigenvalue distribution of genetic and phenotypic dispersion matrices: Evidence for a nonrandom organization of quantitative character variation. Journal of Mathematical Biology, 21, 77–95.CrossRefGoogle Scholar
  74. Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. The American Zoologist, 36, 36–43.Google Scholar
  75. Wagner, G. P., & Altenberg, L. (1996). Perspective: Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.CrossRefGoogle Scholar
  76. Watson, R. A., Wagner, G. P., Pavlicev, M., Weinreich, D. M., & Mills, R. (2013). The evolution of phenotypic correlations and ‘developmental memory’. Evolution, 67(4), 1124–1138. doi: 10.1111/evo.12337.Google Scholar
  77. Willmore, K. E., Roseman, C. C., Rogers, J., Cheverud, J. M., & Richtsmeier, J. T. (2009). Comparison of mandibular phenotypic and genetic integration between baboon and mouse. Evolutionary Biology, 36(1), 19–36. doi: 10.1007/s11692-009-9056-9.PubMedCentralPubMedCrossRefGoogle Scholar
  78. Wolf, J. B., Frankino, W. A., Agrawal, A. F., Iii, E. D. B., & Moore, A. J. (2001). Developmental interactions and the constituents of quantitative variation. Evolution, 55(2), 232–245. doi: 10.1111/j.0014-3820.2001.tb01289.x.PubMedCrossRefGoogle Scholar
  79. Zelditch, M. L., & Carmichael, A. C. (1989). Ontogenetic variation in patterns of developmental and functional integration in skulls of sigmodon fulviventer. Evolution, 43, 814–824.CrossRefGoogle Scholar
  80. Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2004). Geometric morphometrics for biologists: A primer (1st ed.). San Diego: Elsevier.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Guilherme Garcia
    • 1
  • Erika Hingst-Zaher
    • 3
  • Rui Cerqueira
    • 2
  • Gabriel Marroig
    • 1
  1. 1.Laboratório de Evolução de Mamíferos, Departamento de Genética e Biologia Evolutiva, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  2. 2.Laboratório de Vertebrados, Departamento de Ecologia, Instituto de BiologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Museu BiológicoInstituto ButantanSão PauloBrazil

Personalised recommendations