Evolutionary Biology

, Volume 41, Issue 2, pp 262–275 | Cite as

Biased Polyphenism in Polydactylous Cats Carrying a Single Point Mutation: The Hemingway Model for Digit Novelty

  • Axel Lange
  • Hans L. Nemeschkal
  • Gerd B. MüllerEmail author
Research Article


Point mutations in a cis-regulatory element of Sonic Hedgehog are frequently associated with preaxial polydactyly in humans, mice, and cats. The Hemingway mutant in the Maine Coon cat exhibits polyphenic effects of polydactyly that are not equally distributed. A statistical analysis of a comprehensive data base of Hemingway mutants reveals a biased and discontinuous distribution of extra digits. Further biases exist in the difference of effects in fore- versus hind-limbs and in left–right asymmetry. These non-equally distributed phenotypic effects cannot be explained by the point mutation alone. We propose a double mapping model, termed the Hemingway Model, to account for the biased distribution of supernumerary digits. The model is based on the random bistability of individual cells in the limb area affected by the mutation and on the application of the Central Limit Theorem. It proposes two kinds of mapping events that (a) transform a mutational effect of single additive changes into a continuous distribution, and (b) transform the continuous distribution into discrete character states via developmental threshold effects. The threshold widths for the occurrence of discrete extra digits are specified as units of standard deviations of the continuous variable. This makes it possible to specify the generation of empirical developmental variables (the liability of quantitative genetics) as a result of developmental parameters that give rise to biased morphological patterns and phenotypic novelty.


Polydactyly Polyphenism Limb development Central Limit Theorem Developmental thresholds Evolutionary innovation Phenotypic novelty 



We thank the PolyTrak team, especially K. Bussard, USA, and V. Bode, Netherlands, for technical assistance with using PolyTrak. We also thank the experienced Maine Coon breeders, M. Roth and P. Nagl in Germany and S. Otten-Boult in the Netherlands, for their valuable support and patience in answering our questions. P. Shevtsova, a Maine Coon breeder in Moscow, provided the picture of the Hemingway mutant. The X-rays are reproduced with kind permission from S. Otten-Boult. We also express our thanks to two anonymous reviewers for their valuable comments and to Tim Peterson for help with the elements of style.


  1. Adams, W. J. (2009). The life and times of the central limit theorem, Vol. 35. American Mathematical Society. History of Mathematics.Google Scholar
  2. Alber, M., Glimm, T., Hentschel, H. E., Kazmierczak, B., Zhang, Y.-T., Zhu, J., et al. (2008). The morphostatic limit for a model of skeletal pattern formation in the vertebrate limb. Bulletin of Mathematical Biology, 79(2), 460–483.CrossRefGoogle Scholar
  3. Albuisson, J., Isidor, B., Giraud, M., Pichon, O., Marsaud, T., David, A., et al. (2011). Identification of two novel mutations in Shh long-range regulator associated with familial pre-axial polydactyly. Clinical Genetics, 79(4), 371–377.PubMedCrossRefGoogle Scholar
  4. Babbs, C., Furniss, D., Morris-Kay, G. M., & Wilkie, A. O. M. (2008). Polydactyly in the mouse mutant Doublefoot involves altered Gli3 processing and is caused by a large deletion in cis to Indian hedgehog. Mechanisms of Development, 125(5–6), 517–526.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bénazet, J. D., & Zeller, R. (2009). Vertebrate limb development: Moving from classical morphogen gradients to an integrated 4-dimensional patterning system. Cold Spring Harbor Perspectives in Biology, 1(4), a001339. doi: 10.1101/cshperspect.a001339.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bimonte, S., De Angelis, A., Quagliata, L., Giusti, F., Tammaro, R., Dallai, R., et al. (2011). Ofd1 is required in limb bud patterning and endrochondral bone development. Development Biology, 349(2), 179–191.CrossRefGoogle Scholar
  7. Cameron, D. A., Pennimpede, T., & Petkovitch, M. (2009). Tulp3 is a critical repressor of mouse hedgehog signaling. Developmental Dynamics, 238(5), 140–149.CrossRefGoogle Scholar
  8. Chakravarti, A., & Kapoor, A. (2012). The mendelian puzzles. Variation that lie outside of then coding region of a mutated gene can give rise to a range of clinical phenotypes for a Mendelian genetic disorder. Science, 335, 930–931.PubMedCrossRefGoogle Scholar
  9. Chaturvedi, R., Huang, C., Kazmierczak, B., Schneider, R., Schneider, T., Izaguirre, J. A., et al. (2005). On multiscale approaches to three-dimensional modeling of morphogenesis. Journal of the Royal Society, Interface, 2(3), 237–253.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Chen, Y., Knezevi, V., Ervin, V., Hutson, R., Ward, Y., & Mackem, S. (2004). Direct interaction with Hoxd proteins reverses Gli3-repressor function to promote digit formation downstream of Shh. Development, 131(10), 2339–2347.PubMedCrossRefGoogle Scholar
  11. Christley, S. (2008). Modeling and simulation of vertebrate limb development and algorithms for comparative genomics. Dissertation Accessed October 01, 2012.
  12. Cickowski, T., Huang, C., Chaturvedi, R., Gimm, T., Hentschel, H. G. E., Alber, M., et al. (2005). A Framework for three-dimensional simulation of morphogenesis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2(4), 273–288.CrossRefGoogle Scholar
  13. Crampin, E. J., Gaffney, E. A., & Maini, P. K. (2002a). Mode-doubling and tripling in reaction–diffusion patterns on growing domains: A piecewise linear model. Journal of Mathematical Biology, 44(2), 107–128.PubMedCrossRefGoogle Scholar
  14. Crampin, J. E., Hackborn, W. W., & Maini, P. K. (2002b). Pattern formation in reaction–diffusion models with nonuniform domain growth. Bulletin of Mathematical Biology, 64(4), 747–769.PubMedCrossRefGoogle Scholar
  15. Dahte, K. (2009). Molekulare Ursachen isolierter Handfehlbildungen am Beispiel des BMP-Signalwegs und von SHH. Habilitationsschrift.
  16. Danforth, C. H. (1947a). Heredity of polydactyly in the cat. The Journal of Heredity, 38(4), 107–112.PubMedGoogle Scholar
  17. Danforth, C. H. (1947b). Morphology of the feet in polydactyl cats. The American Journal of Anatomy, 80(2), 143–171.PubMedCrossRefGoogle Scholar
  18. Dillon, R., Cadgil, C., & Othmer, H. G. (2003). Short- and long-range effects of Sonic hedgehog in limb development. Proceedings of the National Academy of the Sciences of the United States of America, 100(18), 10152–10157.CrossRefGoogle Scholar
  19. Driess, S. J. (2005). Punktmutationsanalysen bei GLI3-assoziierten Krankheitsbildern: Greig Cephalopolysyndaktylie-Syndrom, Pallister-Hall-Syndrom und isolierte Polydaktylien. Dissertation, University of Marburg.Google Scholar
  20. Dunn, I. C., Paton, I. R., Clelland, A. K., Sebastian, S., Johnson, E. J., McTeir, L., et al. (2011). The chicken polydacyty (Po) causes allelic imbalance and ectopic expression of Shh during limb development. Development Dynamics, 240(5), 1163–1172.CrossRefGoogle Scholar
  21. Falconer, D. S. (1989). Introduction to quantitative genetics. New York: Longman Scientific & Technical.Google Scholar
  22. Farooq, M., Troelsen, J. E., Boyd, M., Eiberg, H., Hansen, L., Hussain, M. S., et al. (2010). Preaxial polydactylous/triphalangeal thumb is associated with changed transcription factor-binding affinity in a family with a novel point mutation in the long range cis-regulator element ZRS. European Journal of Human Genetics, 18(6), 733–736.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Fischer, H. (2011). A History of the central limit theorem. From classical to modern probability theory. New York: Springer.Google Scholar
  24. Fromental-Ramain, C., Warot, X., Messadecq, N., LeMeur, M., Dollé, P., & Chambon, P. (1996). Hoxa-13 and Hoxd13 play a crucial role in the patterning of the limb autopod. Development, 122(10), 2997–3011.PubMedGoogle Scholar
  25. Galis, F., van Alphen, J. J. M., & Metz, J. A. J. (2001). Why five fingers? Evolutionary constraints on digit numbers. Trends in Ecology & Evolution, 16(11), 637–646.CrossRefGoogle Scholar
  26. Gu, X. (2004). Statistical framework for a phylogenomic analysis of gene family expression profiles. Genetics, 167, 531.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Hamelin, A. (2011). La Polydactylousie du Maine Coon. École Nationale Vétérinaire d’Alfort. Dissertation Accessed October 01, 2012.
  28. Haycraft, C. J., Zhang, Q., Song, B., Jackson, W. S., Detloff, P. J., Serra, R., et al. (2007). Intraflagellar transport is essential for endrochondral bone formation. Development, 134(2), 307–316.PubMedCrossRefGoogle Scholar
  29. Hentschel, H. G., Glimm, T., Glazier, J. A., & Newman, S. A. (2004). Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Poceedings of the Royal Society Biologial Sciences, 271(1549), 1713–1722.CrossRefGoogle Scholar
  30. Honig, L., & Summerbell, D. (1985). Maps of strength of positional signalling activity in the developing chick wing bud. Journal of Embryology and Experimental Morphology, 87, 163–174.PubMedGoogle Scholar
  31. Kirschner, Marc W., & Gerhart, John C. (2010). Facilitated variation. In M. Pigliucci & G. B. Müller (Eds.), Evolution—The extended synthesis (pp. 253–280). Boston: MIT Press.CrossRefGoogle Scholar
  32. Klopocki, E., Ott, C.-E., Benatar, N., Ullmann, R., Mundlos, S., & Lehmann, K. (2008). A microduplication of the long range SHH limb regulator (ZRS) is associated with triphalangeal thumb-polysyndactyly syndrome. Journal of Medical Genetics, 45(6), 370–375.PubMedCrossRefGoogle Scholar
  33. Krawchuk, D., Weiner, S. J., Chen, Y.-T., Lu, B. C., Costantini, F., Behringer, R. R., et al. (2010). Twist 1 activity thresholds define multiple functions in limb development. Developmental Biology, 347(1), 133–146.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Kuss, P., Villavicencio-Lorini, P., Witte, F., Klose, J., Albrecht, A. N., Seemann, P., et al. (2009). Mutant Hoxd13 induces extra digits in a mouse model of synpolydactyly directly and by decreasing retonic acid synthesis. The Journal of Clinical Investigation, 119(1), 146–156.PubMedCentralPubMedGoogle Scholar
  35. Lai, K., Robertson, M. J., & Schaffer, D. V. (2004). The sonic hedgehog signaling system as a bistable genetic switch. Biophysical Journal, 88(5), 2748–2757.CrossRefGoogle Scholar
  36. Lettice, L. A., Haeney, S. J. H., Purdie, L. A., Li, L., de Beer, P., Oostra, B. A., et al. (2003). Long range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Human Molecular Genetics, 12(14), 1725–1735.PubMedCrossRefGoogle Scholar
  37. Lettice, L. A., Hill, A. E., Devenney, P. S., & Hill, R. E. (2008). Point mutations in a distant sonic hedgehog cis-regulator generate a variable regulatory output responsible for preaxial polydactyly. Human Molecular Genetics, 17(7), 978–985.PubMedCrossRefGoogle Scholar
  38. Lettice, L. A., Williamson, I., Wiltshire, J. H., Peluso, S., Devenney, P. S., Hill, A. E., et al. (2012). Opposing functions of the ETS factor family define Shh spatial expression in limb buds and underlie polydactyly. Developmental Cell, 22(2), 459–467.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Li, J. (2011). The evolutionary implication of gene expression variation in eukaryotes: From yeast to human. Dissertation, University of Toronto.Google Scholar
  40. Litingtung, Y., Dahn, R. D., Li, Y., Fallon, J. F., & Chiang, C. (2002). Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature, 418, 979–983.PubMedCrossRefGoogle Scholar
  41. Madzvamuse, A., Gaffney, E. A., & Maini, P. K. (2010). Stability analysis of non-autonomous reaction-diffusion systems: The effects of growing domains. Journal of Mathematical Biology, 61(1), 133–164.PubMedCrossRefGoogle Scholar
  42. McFadden, D. G., MCanally, J., Richardson, J. A., Charité, J., & Olson, E. L. (2002). Misexpression of dHAND induces ectopic digits in the developing limb bud in the absence of direct DNA binding. Development, 129(13), 3077–3088.PubMedGoogle Scholar
  43. McGlinn, A., & Tabin, C. J. (2006). Mechanstic insight into how Shh patterns the vertebrate limb. Current Opinion in the Genetics & Development, 16(4), 426–432.CrossRefGoogle Scholar
  44. Meinhardt, H., & Gierer, A. (2000). Pattern formation by local self-activation and lateral inhibition. BioEssays, 22(8), 753–760.PubMedCrossRefGoogle Scholar
  45. Miura, T., Shiota, K., Morris-Kay, G., & Maini, P. K. (2006). Mixed-mode pattern in Doublefoot mutant mouse limb—Turing reaction diffusion model on a growing domain during limb development. Journal of Theoretical Biology, 240, 562–573.PubMedCrossRefGoogle Scholar
  46. Müller, G. B. (2010). Epigenetic innovation. In M. Pigliucci & G. B. Müller (Eds.), Evolution—The extended synthesis (pp. 307–332). Cambridge: MIT Press.CrossRefGoogle Scholar
  47. Newman, S. A., & Bhat, R. (2007). Activator-inhibitor dynamics of vertebrate limb pattern formation. Birth Defects Research C, 81(4), 305–319.CrossRefGoogle Scholar
  48. Newman, S. A., Christley, S., Glimm, T., Hentschel, H. G. E., Kazmierczak, B., Zhang, Y.-T., et al. (2008). Multiscale models for vertebrate limb development. Current Topics in Developmental Biology, 81, 311–340.PubMedCrossRefGoogle Scholar
  49. Newman, S. A., & Müller, G. B. (2005). Origination and innovation in the vertebrate limb sekeleton: An epigenetic perspective. Journal of Experimental Zoology (Mol Dev Evol), 304(6), 593–609.CrossRefGoogle Scholar
  50. Nijhout, H. F. (2004). Stochastic gene expression: Dominance, thresholds and boundaries. In R. A. Veitia (Ed.), The biology of genetic dominance. Austin: Landes Bioscience.Google Scholar
  51. Nissim, S., Allard, P., Bandyopadhyay, A., Harfe, B. D., & Tabin, C. J. (2007). Characterization of novel ectordermal signaling center regulating Tbx2 and Shh in the vertebrate limb. Developmental Biology, 304(1), 9–21.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Niswander, L. (2003). Pattern formation: Old models out in a limb. Nature Reviews Genetics, 4(2), 133–143.PubMedCrossRefGoogle Scholar
  53. Park, K., Kang, J., Subedi, K., Ha, J.-H., & Park, C. (2008). Canine polydactylous mutations with heterogeneous origin in the conserved intronic sequence of LMBR1. Genetics, 179(4), 2163–2172.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Patterson, V. L., Damrau, C., Paudyal, A., Reeve, B., Grimes, D. T., Stewart, M. E., et al. (2009). Mouse hitchhiker mutants have spina bifida, dorso-ventral patterning defects and polydactyly: Identification of Tulp3 as a novel negative regulator of the Sonic hedgehog pathway. Human Molecular Genetics, 18(19), 1719–1739.PubMedCentralPubMedCrossRefGoogle Scholar
  55. Peterson, T., & Müller, G. B. (2013). What is evolutionary novelty? Process versus character based definitions. Journal of Experimental Zoology (Molecular and Developmental Evolution), 320(6), 345–350.CrossRefGoogle Scholar
  56. Pigliucci, M., & Müller, G. B. (Eds.). (2010). Evolution—The extended synthesis. Cambridge: MIT Press.Google Scholar
  57. Platt, K. A., Michaud, J., & Joyner, A. L. (1997). Expression of the mouse Gli and Ptc genes is adjacent to embryonic sources of hedgehog signals suggesting a conservation of pathways between flies and mice. Mechanisms of Development, 62, 121–135.PubMedCrossRefGoogle Scholar
  58. Raj, A., & van Oudenaarden, A. (2008). Nature, nurture or chance: Stochastic gene expression and its consequences. Cell, 135(2), 216–226.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Saunders, J. W., & Gasseling, M. T. (1968). Ectodermal-mesenchymal interactions in the origin of limb symmetry. In R. E. Fleischmajer & R. Billingham (Eds.), Epithelial-mesenchymal interactions (pp. 78–97). Baltimore: Lippincott Williams & Wilkins.Google Scholar
  60. Semerci, C. N., Demirkan, F., Özdemir, M., Biskin, E., Akin, B., Bagci, H., et al. (2009). Homozygous feature of isolated triphalangeal thumb—Preaxial polydactyly linked to 7q36: No phenotypic difference between homozygotes and heterozygotes. Clinical Genetics, 76(1), 85–90.PubMedCrossRefGoogle Scholar
  61. Shapiro, M. D., Bell, M. A., & Kingsley, D. M. (2006). Parallel genetic origins of pelvic reduction in vertebrates. Proceedings of the National Academy of Sciences, 103, 3753–13758.Google Scholar
  62. Sheth, R., Bastida, M. F., & Ros, M. (2007). Hoxd13 and Gli3 interactions modulate digit number in the amniote limb. Development Biology, 310(2), 430–441.CrossRefGoogle Scholar
  63. Sheth, R., Marcon, L., Bastida, M. F., Junco, M., Quintana, L., Dahn, R., et al. (2012). Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science, 338, 1476–1480.PubMedCrossRefGoogle Scholar
  64. Smith, J. C., & Wolpert, L. (1981). Pattern formation along the anteposterior axis of the chick wing: The increase in width following a polarizing region graft and the effect of X-irradiation. Journal of Embryology and Experimental Morphology, 63, 127–144.PubMedGoogle Scholar
  65. Tabin, C. J. (1992). Why we have (only) five fingers per hand: Hox genes and the evolution of paired limbs. Development, 116, 289–296.PubMedGoogle Scholar
  66. Talamillo, A., Bastida, M. F., Fernandez-Teran, M., & Ros, M. A. (2005). The development of the limb and the control of the number of digits. Clinical Genetics, 67, 143–153.PubMedCrossRefGoogle Scholar
  67. Tickle, C. (1981). The number of polarizing region cells required to specify additional digits in the developing chick wing. Nature, 289, 295–298.PubMedCrossRefGoogle Scholar
  68. Tickle, C. (2006). Making digit patterns in the vertebrate limb. Nature Reviews Molecular Cell Biology, 7, 45–53.PubMedCrossRefGoogle Scholar
  69. Tickle, C., Summerbell, D., & Wolpert, L. (1975). Positional information and specification of digits in chicken limb morphogenesis. Nature, 254, 199–202.PubMedCrossRefGoogle Scholar
  70. Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London Series B, 237(641), 37–72.CrossRefGoogle Scholar
  71. Wagner, G. P., & Chiu, C. H. (2001). The tetrapod limb: A hypothesis on its origin. Journal of Experimental Zoology (Molecular and Developmental Evolution), 291(3), 226–240.CrossRefGoogle Scholar
  72. Wieczorek, D., Pawlik, B., Li, Y., Akarsu, N. A., Caliebe, N. A., May, K. J. W., et al. (2010). A specific mutation in the distant sonic hedgehog (SHH) cis-regulator (ZRS) causes Werner mesomelic syndrome (WMS) while complete ZRS duplications underlie Haas type polysyndactyly and preaxial polydactyly (PPD) with or without triphalangeal thumb. Human Mutation, 31(1), 81–89.PubMedCrossRefGoogle Scholar
  73. Wilson, D. J., & Hinchliffe, J. R. (1987). The effect of zone polarizing activity (ZPA) on the anterior half of the chick wing bud. Development, 99(1), 99–108.PubMedGoogle Scholar
  74. Wolpert, L. (1999). Vertebrate limb development and malformations. Pediatric Research, 46(3), 247–254.PubMedCrossRefGoogle Scholar
  75. Wolpert, L. (2009). Diffusible gradients are out—An interview with Lewis Wolpert. Interviewed by Richardson, Michael K. The International Journal of Developmental Biology, 53(5–6), 659–662.PubMedGoogle Scholar
  76. Wright, S. (1934a). An analysis of variability in number of digits in an inbred stain of guinea pigs. Genetics, 19(6), 506–536.PubMedCentralPubMedGoogle Scholar
  77. Wright, S. (1934b). The result of crosses between inbred strains of guinea pigs, differing in number of digits. Genetics, 19(6), 537–551.PubMedCentralPubMedGoogle Scholar
  78. Yada, Y., Makino, S., Chiqusa-Ishiwa, S., & Shiroishi, T. (2002). The mouse polydactylous mutation, luxate (lx), causes anterior shift of the anteposterior border in the developing hind limb bud. International Journal of Developmental Biology, 46(7), 975–982.PubMedGoogle Scholar
  79. Yang, Y., Drossopoulou, G., Chuang, P.-T., Duprez, D., Marti, E., Bumcrot, D., et al. (1997). Relationship between dose, distance and time in Sonic Hedgehog-mediated regulation of anteroposterior polarity in the chick limb. Development, 124(21), 4393–4404.PubMedGoogle Scholar
  80. Zhang, Z., Sui, P., Dong, A., Hasssell, J., Cserjesi, P., Chen, Y.-T., et al. (2010). Preaxial polydactyly: Interactions among ETV, TWIST1 and Hand2 control anterior-posterior patterning of the limb. Development, 137(20), 3417–3426.PubMedCentralPubMedCrossRefGoogle Scholar
  81. Zhao, J., Ding, Y., Li, Y., Ren, K., Sha, J., Zhu, J., et al. (2009). HnRNP U mediates the long-range regulation of Shh expression during limb development. Human Molecular Genetics, 18(16), 3090–3097.PubMedCrossRefGoogle Scholar
  82. Zhu, J., Zhang, Y.-T., Alber, M. S., & Newman, S. A. (2010). Bare bones patterning formation: A core regulatory network in varying geometrics reproduces major features of vertebrate limb development and evolution. PLoS ONE, 5(5), e10892. doi: 10.1371/journal.pone.0010892.PubMedCentralPubMedCrossRefGoogle Scholar
  83. Zuniga, A., Zeller, R., & Probst, S. (2012). The molecular basis of human congenital limb malformations. Wiley Interdisciplinary Reviews: Developmental Biology, 1(6), 803–822.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Axel Lange
    • 1
  • Hans L. Nemeschkal
    • 1
  • Gerd B. Müller
    • 1
    Email author
  1. 1.Department of Theoretical BiologyUniversity of ViennaViennaAustria

Personalised recommendations