Evolutionary Biology

, Volume 41, Issue 1, pp 62–70 | Cite as

Experimental Removal of Sexual Selection Reveals Adaptations to Polyandry in Both Sexes

  • Marco Demont
  • Vera M. Grazer
  • Łukasz Michalczyk
  • Anna L. Millard
  • Sonja H. Sbilordo
  • Brent C. Emerson
  • Matthew J. G. Gage
  • Oliver Y. Martin
Research Article

Abstract

Polyandrous mating is extremely common, yet for many species the evolutionary significance is not fully resolved. In order to understand the evolution of mating systems, it is crucial that we investigate the adaptive consequences across many facets of reproduction. We performed experimental evolution with the naturally polygamous flour beetle Tribolium castaneum subjected to either polyandry or enforced monogamy, creating contrasting selection regimes associated with the presence or absence of sexual selection. After 36 generations, we investigated male and female adaptations by mating beetles with an unselected tester strain to exclude potential effects of male–female coevolution. Reproductive success of focal monogamous and polyandrous beetles from each sex was assessed in separate single male and multiple male experiments emulating the different selection backgrounds. Males and females from the polyandrous regime had more offspring in the experiments with multiple males present than monogamous counterparts. However, in single male experiments, neither females nor males differed between selection regimes. Subsequent mating trials with multiple males suggested that adaptations to polyandry in both sexes provide benefits when choice and competition were allowed to take place. Polyandrous females delayed the first copulation when given a choice of males and polyandrous males were quicker to achieve copulation when facing competition. In conclusion, we show that the expected benefits of evolutionary adaptation to polyandry in T. castaneum depended on the availability of multiple mates. This context-dependent effect, which concerned both sexes, highlights the importance of realistic competition and choice experiments.

Keywords

Experimental evolution Mating system Monogamy Multiple mating Reproductive success Tribolium castaneum 

References

  1. Arnqvist, G., & Nilsson, T. (2000). The evolution of polyandry: Multiple mating and female fitness in insects. Animal Behaviour, 60, 145–164.PubMedCrossRefGoogle Scholar
  2. Arnqvist, G., & Rowe, L. (2005). Sexual conflict. Princeton: Princeton University Press.Google Scholar
  3. Blanckenhorn, W. U., Hosken, D. J., Martin, O. Y., Reim, C., Teuschl, Y., & Ward, P. I. (2002). The costs of copulating in the dung fly Sepsis cynipsea. Behavioral Ecology, 13, 353–358.CrossRefGoogle Scholar
  4. Bretman, A., & Tregenza, T. (2005). Measuring polyandry in wild populations: A case study using promiscuous crickets. Molecular Ecology, 14, 2169–2179.PubMedCrossRefGoogle Scholar
  5. Chapman, T., Arnqvist, G., Bangham, J., & Rowe, L. (2003). Sexual conflict. Trends in Ecology & Evolution, 18, 41–47.CrossRefGoogle Scholar
  6. Chapman, T., Liddle, L. F., Kalb, J. M., Wolfner, M. F., & Partridge, L. (1995). Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature, 373, 241–244.PubMedCrossRefGoogle Scholar
  7. Crudgington, H. S., Beckerman, A. P., Brustle, L., Green, K., & Snook, R. R. (2005). Experimental removal and elevation of sexual selection: Does sexual selection generate manipulative males and resistant females? American Naturalist, 165, S72–S87.PubMedCrossRefGoogle Scholar
  8. Demont, M., Buser, C. C., Martin, O. Y., & Bussière, L. F. (2011). Natural levels of polyandry: Differential sperm storage and temporal changes in sperm competition intensity in wild yellow dung flies. Functional Ecology, 25, 1079–1090.CrossRefGoogle Scholar
  9. Demont, M., Martin, O. Y., & Bussière, L. F. (2012). Wild yellow dung fly females may not select sperm based on dung pat microclimate but could nevertheless benefit from polyandry. Evolutionary Ecology, 26, 715–731.CrossRefGoogle Scholar
  10. Edward, D. A., Fricke, C., & Chapman, T. (2010). Adaptations to sexual selection and sexual conflict: Insights from experimental evolution and artificial selection. Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 2541–2548.PubMedCentralCrossRefGoogle Scholar
  11. Fedina, T. Y., & Lewis, S. M. (2007). Female mate choice across mating stages and between sequential mates in flour beetles. Journal of Evolutionary Biology, 20, 2138–2143.PubMedCrossRefGoogle Scholar
  12. Fedina, T. Y., & Lewis, S. M. (2008). An integrative view of sexual selection in Tribolium flour beetles. Biological Reviews, 83, 151–171.PubMedCrossRefGoogle Scholar
  13. Firman, R. C., & Simmons, L. W. (2008). Polyandry facilitates postcopulatory inbreeding avoidance in house mice. Evolution, 62, 603–611.PubMedCrossRefGoogle Scholar
  14. Gay, L., Eady, P. E., Vasudev, R., Hosken, D. J., & Tregenza, T. (2009). Does reproductive isolation evolve faster in larger populations via sexually antagonistic coevolution? Biology Letters, 5, 693–696.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Grazer, V. M., & Martin, O. Y. (2012). Elevated temperature changes female costs and benefits of reproduction. Evolutionary Ecology, 26, 625–637.CrossRefGoogle Scholar
  16. Halliday, T., & Arnold, S. J. (1987). Multiple mating by females—A perspective from quantitative genetics. Animal Behaviour, 35, 939–941.CrossRefGoogle Scholar
  17. Hangartner, S. B., Sbilordo, S. H., Michalczyk, Ł., Gage, M. J. G., & Martin, O. Y. (in press). Are there genetic trade-offs between immune and reproductive investments in Tribolium castaneum? Infection, Genetics and Evolution.Google Scholar
  18. Hoffmann, A. A., & Parsons, P. A. (1991). Evolutionary genetics and environmental stress. Oxford: Oxford University Press.Google Scholar
  19. Holland, B., & Rice, W. R. (1999). Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proceedings of the National Academy of Sciences of the United States of America, 96, 5083–5088.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Hosken, D. J., Garner, T. W. J., & Ward, P. I. (2001). Sexual conflict selects for male and female reproductive characters. Current Biology, 11, 489–493.PubMedCrossRefGoogle Scholar
  21. Hosken, D. J., Martin, O. Y., Wigby, S., Chapman, T., & Hodgson, D. J. (2009). Sexual conflict and reproductive isolation in flies. Biology Letters, 5, 697–699.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hosken, D. J., & Stockley, P. (2003). Benefits of polyandry: A life history perspective. Evolutionary Biology, 33, 173–194.Google Scholar
  23. Hosken, D. J., & Ward, P. I. (2001). Experimental evidence for testis size evolution via sperm competition. Ecology Letters, 4, 10–13.CrossRefGoogle Scholar
  24. Jenni, D. A. (1974). Evolution of polyandry in birds. American Zoologist, 14, 129–144.Google Scholar
  25. Jennions, M. D., & Petrie, M. (2000). Why do females mate multiply? A review of the genetic benefits. Biological Reviews, 75, 21–64.PubMedCrossRefGoogle Scholar
  26. Kotiaho, J. S., & Puurtinen, M. (2007). Mate choice for indirect genetic benefits: scrutiny of the current paradigm. Functional Ecology, 21, 638–644.CrossRefGoogle Scholar
  27. Lewis, S. M., & Austad, S. N. (1994). Sexual selection in flour beetles—The relationship between sperm precedence and male olfactory attractiveness. Behavioral Ecology, 5, 219–224.CrossRefGoogle Scholar
  28. Martin, O. Y., & Hosken, D. J. (2003a). Costs and benefits of evolving under experimentally enforced polyandry or monogamy. Evolution, 57, 2765–2772.PubMedGoogle Scholar
  29. Martin, O. Y., & Hosken, D. J. (2003b). The evolution of reproductive isolation through sexual conflict. Nature, 423, 979–982.PubMedCrossRefGoogle Scholar
  30. Martin, O. Y., & Hosken, D. J. (2004a). Copulation reduces male but not female longevity in Saltella sphondylli (Diptera: Sepsidae). Journal of Evolutionary Biology, 17, 357–362.PubMedCrossRefGoogle Scholar
  31. Martin, O. Y., & Hosken, D. J. (2004b). Reproductive consequences of population divergence through sexual conflict. Current Biology, 14, 906–910.PubMedCrossRefGoogle Scholar
  32. Martin, O. Y., Hosken, D. J., & Ward, P. I. (2004). Postcopulatory sexual selection and female fitness in Scathophaga stercoraria. Proceedings of the Royal Society of London Series B-Biological Sciences, 271, 353–359.CrossRefGoogle Scholar
  33. Mays, H. L., & Hill, G. E. (2004). Choosing mates: Good genes versus genes that are a good fit. Trends in Ecology & Evolution, 19, 554–559.CrossRefGoogle Scholar
  34. Michalczyk, Ł., Martin, O. Y., Millard, A. L., Emerson, B. C., & Gage, M. J. G. (2010). Inbreeding depresses sperm competitiveness, but not fertilization or mating success in male Tribolium castaneum. Proceedings of the Royal Society B-Biological Sciences, 277, 3483–3491.PubMedCentralCrossRefGoogle Scholar
  35. Michalczyk, Ł., Millard, A. L., Martin, O. Y., Lumley, A. J., Emerson, B. C., Chapman, T., et al. (2011a). Inbreeding promotes female promiscuity. Science, 333, 1739–1742.PubMedCrossRefGoogle Scholar
  36. Michalczyk, Ł., Millard, A. L., Martin, O. Y., Lumley, A. J., Emerson, B. C., & Gage, M. J. G. (2011b). Experimental evolution exposes female and male responses to sexual selection and conflict in Tribolium castaneum. Evolution, 65, 713–724.PubMedCrossRefGoogle Scholar
  37. Moret, Y., & Schmid-Hempel, P. (2000). Survival for immunity: The price of immune system activation for bumblebee workers. Science, 290, 1166–1168.PubMedCrossRefGoogle Scholar
  38. Neff, B. D., & Pitcher, T. E. (2005). Genetic quality and sexual selection: an integrated framework for good genes and compatible genes. Molecular Ecology, 14, 19–38.PubMedCrossRefGoogle Scholar
  39. Pai, A., & Yan, G. Y. (2003). Rapid female multiple mating in red flour beetles (Tribolium castaneum). Canadian Journal of Zoology-Revue Canadienne De Zoologie, 81, 888–896.CrossRefGoogle Scholar
  40. Parker, G. A. (1979). Sexual selection and sexual conflict. In M. S. Blum & N. A. Blum (Eds.), Sexual selection and reproductive competition in insects (pp. 123–166). London: Academic Press.Google Scholar
  41. Pitnick, S., Miller, G. T., Reagan, J., & Holland, B. (2001). Males’ evolutionary responses to experimental removal of sexual selection. Proceedings of the Royal Society of London Series B-Biological Sciences, 268, 1071–1080.CrossRefGoogle Scholar
  42. Price, T. A. R., Hodgson, D. J., Lewis, Z., Hurst, G. D. D., & Wedell, N. (2008). Selfish genetic elements promote polyandry in a fly. Science, 322, 1241–1243.PubMedCrossRefGoogle Scholar
  43. Rice, W. R. (1996). Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature, 381, 232–234.PubMedCrossRefGoogle Scholar
  44. Rice, W. R. (2000). Dangerous liaisons. Proceedings of the National Academy of Sciences of the United States of America, 97, 12953–12955.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Sbilordo, S. H., Grazer, V. M., Demont, M., & Martin, O. Y. (2011). Impacts of starvation on male reproductive success in Tribolium castaneum. Evolutionary Ecology Research, 13, 347–359.Google Scholar
  46. Schwarzenbach, G. A., & Ward, P. I. (2007). Phenoloxidase activity and pathogen resistance in yellow dung flies Scathophaga stercoraria. Journal of Evolutionary Biology, 20, 2192–2199.PubMedCrossRefGoogle Scholar
  47. Simmons, L. W. (2001). The evolution of polyandry: An examination of the genetic incompatibility and good-sperm hypotheses. Journal of Evolutionary Biology, 14, 585–594.CrossRefGoogle Scholar
  48. Simmons, L. W. (2005). The evolution of polyandry: Sperm competition, sperm selection, and offspring viability. Annual Review of Ecology Evolution and Systematics, 36, 125–146.CrossRefGoogle Scholar
  49. Simmons, L. W., Beveridge, M., & Kennington, W. J. (2007). Polyandry in the wild: Temporal changes in female mating frequency and sperm competition intensity in natural populations of the Tettigoniid Requena verticalis. Molecular Ecology, 16, 4613–4623.PubMedCrossRefGoogle Scholar
  50. Simmons, L. W., & Garcia-Gonzalez, F. (2008). Evolutionary reduction in testes size and competitive fertilization success in response to the experimental removal of sexual selection in dung beetles. Evolution, 62, 2580–2591.PubMedCrossRefGoogle Scholar
  51. Snook, R. R., Brüstle, L., & Slate, J. (2009). A test and review of the role of effective population size on experimental sexual selection patterns. Evolution, 63, 1923–1933.PubMedCrossRefGoogle Scholar
  52. South, A., Sirot, L. K., & Lewis, S. M. (2011). Identification of predicted seminal fluid proteins in Tribolium castaneum. Insect Molecular Biology, 20, 447–456.PubMedCrossRefGoogle Scholar
  53. Thornhill, R., & Alcock, J. (1983). The evolution of insect mating systems. Cambridge: Harvard University Press.Google Scholar
  54. Tregenza, T., & Wedell, N. (2000). Genetic compatibility, mate choice and patterns of parentage: Invited review. Molecular Ecology, 9, 1013–1027.PubMedCrossRefGoogle Scholar
  55. Tregenza, T., & Wedell, N. (2002). Polyandrous females avoid costs of inbreeding. Nature, 415, 71–73.PubMedCrossRefGoogle Scholar
  56. Vahed, K. (1998). Sperm precedence and the potential of the nuptial gift to function as paternal investment in the Tettigoniid Steropleurus stali Bolivar (Orthoptera: Tettigoniidae: Epphippigerinae). Journal of Orthoptera Research, 7, 223–226.CrossRefGoogle Scholar
  57. Wigby, S., & Chapman, T. (2004). Female resistance to male harm evolves in response to manipulation of sexual conflict. Evolution, 58, 1028–1037.PubMedGoogle Scholar
  58. Wigby, S., & Chapman, T. (2005). Sex peptide causes mating costs in female Drosophila melanogaster. Current Biology, 15, 316–321.PubMedCrossRefGoogle Scholar
  59. Zeh, J. A., & Zeh, D. W. (1996). The evolution of polyandry I: Intragenomic conflict and genetic incompatibility. Proceedings of the Royal Society B-Biological Sciences, 263, 1711–1717.CrossRefGoogle Scholar
  60. Zeh, J. A., & Zeh, D. W. (1997). The evolution of polyandry II: Post-copulatory defences against genetic incompatibility. Proceedings of the Royal Society B-Biological Sciences, 264, 69–75.PubMedCentralCrossRefGoogle Scholar
  61. Zeh, J. A., & Zeh, D. W. (2001). Reproductive mode and the genetic benefits of polyandry. Animal Behaviour, 61, 1051–1063.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marco Demont
    • 1
  • Vera M. Grazer
    • 1
  • Łukasz Michalczyk
    • 3
  • Anna L. Millard
    • 2
  • Sonja H. Sbilordo
    • 1
  • Brent C. Emerson
    • 2
    • 4
  • Matthew J. G. Gage
    • 2
  • Oliver Y. Martin
    • 1
  1. 1.Experimental Ecology, Institute of Integrative Biology (IBZ)ETH ZürichZurichSwitzerland
  2. 2.School of Biological SciencesUniversity of East AngliaNorwichUK
  3. 3.Department of Entomology, Institute of ZoologyJagiellonian UniversityKrakówPoland
  4. 4.Island Ecology and Evolution Research Group (IPNA-CSIC)La LagunaSpain

Personalised recommendations