Advertisement

Evolutionary Biology

, Volume 41, Issue 1, pp 38–51 | Cite as

In and Out the Amazonia: Evolutionary Ecomorphology in Howler and Capuchin Monkeys

  • Carlo MeloroEmail author
  • Nilton Cáceres
  • Francesco Carotenuto
  • Jonas Sponchiado
  • Geruza Leal Melo
  • Federico Passaro
  • Pasquale Raia
Research Article

Abstract

The impact of environmental variation on phenotypic diversification is one major issue in evolutionary studies. Environmental variation is thought to be a primary factor in evolution, especially at high latitudes. In contrast, tropical areas are traditionally viewed as the cradle where the long-term effects of biological interactions on phenotypic change reside. We analyse patterns of skull shape variation in two New World monkey groups: capuchins and howlers. These two monophyletic clades are exceptionally similar in terms of the geographic distribution of their species. Yet, their body size and diet are different: howler monkeys are large and almost exclusively folivorous, whereas capuchins are small omnivorous. We found that the size, and direction of vectors of phenotypic changes across South American biomes in those clades are not statistically different. This similarity persists after removing the strong impact of allometry in our data. Additionally, partial least squares and comparative analyses confirm that “allometry free” skull shape is influenced to the same set of environmental variables in both clades. This study remarks the paramount importance of both body size and environmental variation on phenotypic evolution.

Keywords

Skull shape Climatic adaptation Partial least squares South America Amazon forest 

Notes

Acknowledgments

We are grateful curators and staff of the Museu Nacional (MNRJ) (J.A. de Oliveira and S.M. Vaz), Museu Paraense Emílio Goeldi (MPEG) (S.M. Aguiar and J.S. Silva Jr.), Museu de Zoologia da Universidade de São Paulo (MZUSP) (M. De Vivo and J.G. Barros), Museu de História Natural Capão da Imbuia (MHNCI) (G.M. SiqueiraTebet), Coleção Científica de Mastozoologia da UFPR (DZUP) (F.C. Passos and I.P. Bernardi), and Museu de CiênciasNaturais da Fundação Zoobotânica do Rio Grande do Sul (MCN/FZB) (L.S. Hoffmann) for the kindly authorization and support to specimens access. Senior author (Carlo Meloro) is currently supported by TEMASAV/DOTTORI DI RICERCA-ESPERTI/26, Francesco Carotenuto by the program FORGIARE V, and Nilton Cáceres by the “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq) in Brazil (PDE process number 202267/2011-3).

Supplementary material

11692_2013_9244_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1108 kb)

References

  1. Adams, D. C. (2008). Phylogenetic meta-analysis. Evolution, 62, 567–572.PubMedCrossRefGoogle Scholar
  2. Adams, D. C., & Collyer, M. L. (2007). Analysis of character divergence along environmental gradients and other covariates. Evolution, 3, 510–515.CrossRefGoogle Scholar
  3. Adams, D. C., & Collyer, M. L. (2009). A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution, 5, 1143–1154.CrossRefGoogle Scholar
  4. Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: Ten years of progress following the ‘revolution’. Italian Journal of Zoology, 1, 5–16.CrossRefGoogle Scholar
  5. Agostini, I. (2008). Ecology and behavior of two howler monkey species (Alouatta guariba clamitans and Alouatta caraya) living in sympatry in northeastern Argentina. PhD dissertation. Rome: University “La Sapienza”.Google Scholar
  6. Agostini, I., Holzmann, I., & Di Bitetti, M. S. (2010). Ranging patterns of two syntopic howler monkey species (Alouatta guariba and A. caraya) in Northeastern Argentina. International Journal of Primatology, 31, 363–381.CrossRefGoogle Scholar
  7. Bastir, M., Rosas, A., Stringer, C., Cuétara, J. M., Kruszynski, R., Weber, G. W., et al. (2010). Effects of brain and facial size on basicranial form in human and primate evolution. Journal of Human Evolution, 5, 424–431.CrossRefGoogle Scholar
  8. Bookstein, F. L. (1989). ‘Size and shape’: A comment on semantics. Systematic Zoology, 38, 173–180.CrossRefGoogle Scholar
  9. Burnham, R. J., & Johnson, K. R. (2004). South American palaeobotany and the origins of Neotropical rainforests. Philosophical Transaction of the Royal Society B, 359, 1595–1610.CrossRefGoogle Scholar
  10. Bush, M. B., & de Oliveira, P. E. (2006). The rise and fall of the Refugial Hypothesis of Amazonian speciation: A paleoecological perspective; Apogeu e declínio da Hipótese dos Refúgios para a especiação na Amazônia: Uma perspectiva paleoecológica. Biota Neotropica. doi: 10.1590/S1676-06032006000100002.Google Scholar
  11. Cardini, A., Dunn, J., O’Higgins, P., & Elton, S. (2013). Clines in Africa: Does size vary in the same way among widespread sub-Saharan monkeys? Journal of Biogeography, 40, 370–381.CrossRefGoogle Scholar
  12. Cardini, A., & Elton, S. (2009). Geographical and taxonomic influences on cranial variation in red colobus monkeys (Primates, Colobinae): Introducing a new approach to ‘morph’ monkeys. Global Ecology and Biogeography, 18, 248–263.CrossRefGoogle Scholar
  13. Cardini, A., Jansson, A. U., & Elton, S. (2007). A geometric morphometric approach to the study of ecogeographical and clinal variation in vervet monkeys. Journal of Biogeography, 34, 1663–1678.CrossRefGoogle Scholar
  14. Cardini, A., & Tongiorgi, P. (2003). Yellow-bellied marmots ‘in the shape space’: Sexual dimorphism, growth and allometry of the mandible. Zoomorphology, 122, 11–23.Google Scholar
  15. Chapman, C. A., & Fedigan, L. M. (1990). Dietary differences between neighboring Cebus capucinus groups: Local traditions, food availability or responses to food profitability? Folia Primatologica, 54, 177–186.CrossRefGoogle Scholar
  16. Chiou, K. L., Pozzi, L., Lynch Alfaro, J. W., & Di Fiore, A. (2011). Pleistocene diversification of living squirrel monkeys (Saimiri spp.) inferred from complete mitochondrial genome sequences. Molecular Phylogenetics and Evolution, 3, 736–745.CrossRefGoogle Scholar
  17. Collins, C. A., & Dubach, J. M. (2000). Phylogenetic relationships of spider monkeys (Ateles) based on mitochondrial DNA variation. International Journal of Primatology, 21(3), 381–420.CrossRefGoogle Scholar
  18. Cortés-Ortiz, L., Bermingham, E., Rico, C., Rodriguez-Luna, E., Sampaio, I., & Ruiz-Garcia, M. (2003). Molecular systematics and biogeography of the Neotropical monkey genus, Alouatta. Molecular Phylogenetics and Evolution, 26, 64–81.PubMedCrossRefGoogle Scholar
  19. Currie, D. J. (1991). Energy and large-scale patterns of animal and plant species richness. The American Naturalist, 137, 27–49.CrossRefGoogle Scholar
  20. Davies, T. J., Purvis, A., & Gittlemann, J. L. (2009). Quaternary climate change and the geographic ranges of mammals. The American Naturalist, 174, 297–307.PubMedCrossRefGoogle Scholar
  21. Davis, M. B., Shaw, R. G., & Etterson, J. R. (2005). Evolutionary responses to changing climate. Ecology, 86, 1704–1714.CrossRefGoogle Scholar
  22. De Vivo, M., & Carmignotto, A. P. (2004). Holocene vegetation change and the mammal faunas of South America and Africa. Journal Biogeography, 31, 943–957.CrossRefGoogle Scholar
  23. Fiaschi, P., & Pirani, J. R. (2009). Review of plant biogeographic studies in Brazil. Journal of Systematics and Evolution, 47, 477–496.CrossRefGoogle Scholar
  24. Flores, D. A., & Casinos, A. (2011). Cranial ontogeny and sexual dimorphism in two New World monkeys: Alouatta caraya (Atelidae) and Cebus apella (Cebidae). Journal of Morphology, 272, 744–757.PubMedCrossRefGoogle Scholar
  25. Frédérich, B., Sorenson, L., Santini, F., Slater, G. J., & Alfaro, M. E. (2013). Iterative ecological radiation and convergence during the evolutionary history of damselfishes (Pomacentridae). The American Naturalist, 1, 94–113.CrossRefGoogle Scholar
  26. Froehlich, J. W., Suprianata, J., & Froehlich, P. H. (1991). Morphometric analyses of Ateles: Systematics and biogegraphic implications. American Journal of Primatology, 25, 1–22.CrossRefGoogle Scholar
  27. Frost, S. R., Marcus, L. F., Bookstein, F. L., Reddy, D. P., & Delson, E. (2003). Cranial allometry, phylogeography and systematics of large-bodied Papionins (Primates: Cercopithecinae) inferred from geometric morphometric analysis of landmark data. Anatomical Records, 275A, 1048–1072.CrossRefGoogle Scholar
  28. Galetti, M., & Pedroni, F. (1994). Seasonal diet of capuchin monkeys (Cebus apella) in a semi-deciduous forest in south-east Brazil. Journal of Tropical Ecology, 10, 27–39.CrossRefGoogle Scholar
  29. Garland, T., Bennett, A. F., & Rezende, E. L. (2003). Phylogenetic approaches in comparative physiology. Journal of Experimental Biology, 208, 3015–3035.CrossRefGoogle Scholar
  30. Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Harvard University Press.Google Scholar
  31. Hawkins, B. A., Diniz-Filho, J. A. F., Jaramillo, C. A., & Soeller, S. A. (2006). Post-Eocene climate change, niche conservatism, and the latitudinal diversity gradient of New World birds. Journal of Biogeography, 33, 770–780.CrossRefGoogle Scholar
  32. Hoffmann, A. A., & Sgrò, C. M. (2011). Climate change and evolutionary adaptation. Nature, 470, 479–485.PubMedCrossRefGoogle Scholar
  33. Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., et al. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330, 927–931.PubMedCrossRefGoogle Scholar
  34. Klingenberg, C. P. (1996). Multivariate allometry. In L. F. Marcus, M. Corti, A. Loy, G. J. P. Naylor, & D. E. Slice (Eds.), Advances in morphometrics (pp. 23–49). New York: Plenum Press.CrossRefGoogle Scholar
  35. Klingenberg, C. P. (2011). MorphoJ: An integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 353–357.PubMedCrossRefGoogle Scholar
  36. Klingenberg, C. P., Barluenga, M., & Meyer, A. (2002). Shape analysis of symmetric structures: Quantifying variation among individuals and asymmetry. Evolution, 56, 1909–1920.PubMedGoogle Scholar
  37. Klingenberg, C. P., & Gidazwiski, N. A. (2010). Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Systematic Biology, 59, 245–261.PubMedCrossRefGoogle Scholar
  38. Klingenberg, C. P., & Spence, J. R. (1993). Heterochrony and allometry: Lessons from the water strider genus Limnoporus. Evolution, 47, 1834–1853.CrossRefGoogle Scholar
  39. Lehman, S. M., & Fleagle, J. G. (2006). Biogeography and primates: A review. In S. M. Lehman & J. G. Fleagle (Eds.), Primate biogeography (pp. 1–36). New York: Springer.CrossRefGoogle Scholar
  40. Lynch Alfaro, J. W., Boubli, J. P., Olson, L. E., Di Fiore, A., Wilson, B., et al. (2012a). Explosive Pleistocene range expansion leads to widespread Amazonian sympatry between robust and gracile capuchin monkeys. Journal of Biogeography, 39, 272–288.CrossRefGoogle Scholar
  41. Lynch Alfaro, J. W., Silva, J. S., & Rylands, A. B. (2012b). How different are robust and gracile capuchin monkeys? An argument for the use of Sapajus and Cebus. American Journal of Primatology, 74, 273–286.CrossRefGoogle Scholar
  42. Machado, F. A., & Hingst-Zaher, E. (2009). Investigating South American biogeographic history using patterns of skull shape variation on Cerdocyon thous (Mammalia: Canidae). Biological Journal of the Linnean Society, 1, 77–84.CrossRefGoogle Scholar
  43. Marroig, G., & Cheverud, J. (2001). A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology and ontogeny during cranial evolution of New World monkeys. Evolution, 55, 2576–2600.PubMedGoogle Scholar
  44. Marroig, G., & Cheverud, J. (2004). Did natural selection or genetic drift produce the cranial diversification of Neotropical monkeys? The American Naturalist, 163, 417–428.PubMedCrossRefGoogle Scholar
  45. Marroig, G., & Cheverud, J. (2005). Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in New World monkeys. Evolution, 59, 1128–1142.PubMedGoogle Scholar
  46. Marroig, G., & Cheverud, J. (2010). Size as a line of least evolutionary resistance II: Direct selection on size or correlated response due to constraints? Evolution, 64–5, 1470–1488.Google Scholar
  47. Martins, M. M. (2008). Fruit diet of Alouatta guariba and Brachyteles arachnoides in Southeastern Brazil: Comparison of fruit type, color, and seed size. Primates, 49, 1–8.PubMedCrossRefGoogle Scholar
  48. Meloro, C. (2011). Feeding habits of Plio-Pleistocene large carnivores as revealed by their mandibular geometry. Journal of Vertebrate Paleontology, 31, 428–446.CrossRefGoogle Scholar
  49. Meloro, C., & Jones, M. E. H. (2012). Tooth and cranial disparity in the fossil relatives of Sphenodon (Rhynchocephalia) dispute the persistent ‘living fossil’ label. Journal of Evolutionary Biology, 25, 2194–2209.PubMedCrossRefGoogle Scholar
  50. Meloro, C., Raia, P., Piras, P., Barbera, C., & O’Higgins, P. (2008). The shape of the mandibular corpus in large fissiped carnivores: Allometry, function and phylogeny. Zoological Journal of the Linnean Society, 154, 832–845.CrossRefGoogle Scholar
  51. Mittelbach, G. G., Schemske, D. W., Cornell, H. V., Allen, A. P., Brown, J. M., Bush, M. B., et al. (2007). Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecology Letters, 10, 315–331.PubMedCrossRefGoogle Scholar
  52. Monnet, C., De Baets, K., & Klug, C. (2011). Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods. BMC Evolutionary Biology, 11, 115.Google Scholar
  53. Monteiro, L. R., Duarte, L. C., & dos Reis, S. F. (2003). Environmental correlates of geographical variation in skull and mandible shape of the punarè rat Thrichomysapereoides (Rodentia: Echimyidae). Journal of Zoology, 261, 47–57.CrossRefGoogle Scholar
  54. Moura, A. C. A., & Lee, P. C. (2004). Capuchin stone tool use in Caatinga dry forest. Science, 306, 1909.PubMedCrossRefGoogle Scholar
  55. Olson, R. J., Johnson, K., Zheng, D., & Scurlock, J. M. O. (2001). Global and regional ecosystem modeling: Databases of model drivers and validation measurements. ORNL/TM-2001/196. Oak Ridge, TN: Oak Ridge National Laboratory.Google Scholar
  56. Ottoni, E. B., & Izar, P. (2008). Capuchin monkey tool use: Overview and implications. Evolutionary Anthropology, 17, 171–178.CrossRefGoogle Scholar
  57. Piras, P., Marcolini, F., Claude, J., Ventura, J., Kotsakis, T., & Cubo, J. (2012). Ecological and functional correlates of molar shape variation in European populations of Arvicola (Arvicolinae, Rodentia). Zoologischer Anzeiger, 251, 335–343.CrossRefGoogle Scholar
  58. Rabosky, D. L., & Adams, D. C. (2012). Rates of morphological evolution are correlated with species richness in salamanders. Evolution, 66, 1807–1818.PubMedCrossRefGoogle Scholar
  59. Raia, P., Carotenuto, F., Passaro, F., Piras, P., Fulgione, D., Werdelin, L., et al. (2013). Rapid action in the Palaeogene, the relationship between phenotypic and taxonomic diversification in Cenozoic mammals. Proceedings of the Royal Society London B, 280, 20122244.CrossRefGoogle Scholar
  60. Raia, P., Passaro, F., Fulgione, D., & Carotenuto, F. (2012). Habitat tracking, stasis and survival in Neogene large mammals. Biology Letters, 8, 64–66.PubMedCentralPubMedCrossRefGoogle Scholar
  61. Ricklefs, R. E., & Renner, S. S. (1994). Species richness within families of flowering plants. Evolution, 48, 1619–1636.CrossRefGoogle Scholar
  62. Rohlf, F. J. (2000). On the use of shape spaces to compare morphometric methods. Hystrix, Italian Journal of Mammology, 11, 9–25.Google Scholar
  63. Rohlf, F. J. (2006). tpsPLS 1.18. Stony Brook, NY: Department of Ecology and Evolution, State University of New York.Google Scholar
  64. Rohlf, F. J. (2010). tpsDig 2.16. Stony Brook, NY: Department of Ecology and Evolution, State University of New York.Google Scholar
  65. Rohlf, F. J., & Corti, M. (2000). Use of two-block partial least squares to study covariation in shape. Systematic Biology, 49, 740–753.PubMedCrossRefGoogle Scholar
  66. Rohlf, F. J., & Slice, D. E. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 9, 40–59.CrossRefGoogle Scholar
  67. Rosenberger, A. L. (1992). Evolution of feeding niches in New World monkeys. American Journal of Physical Anthropology, 88, 525–562.PubMedCrossRefGoogle Scholar
  68. Rosenberger, A. L., Halenar, L., & Cooke, S. B. (2011). The making of platyrrhine semifolivores: Models for the evolution of folivory in primates. Anatomical Records, 12, 2112–2130.CrossRefGoogle Scholar
  69. Rundell, R. J., & Price, T. D. (2009). Adaptive radiation, non-adaptive radiation, ecological speciation and non-ecological speciation. Trends in Ecology & Evolution, 24, 394–399.CrossRefGoogle Scholar
  70. Silva, J. S. (2001). Especiação nos macacos-prego e cairaras, gênero Cebus Erxleben, 1777 (Primates, Cebidae). PhD thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.Google Scholar
  71. Stenseth, N. C. (1984). The tropics: Cradle or museum? Oikos, 43, 417–420.CrossRefGoogle Scholar
  72. Thorpe, R. S. (1983). A biometric study of the effects of growth on the analysis of geographic variation: Tooth number in green geckos (Reptilia, Phelsuma). Journal of Zoology, London, 201, 13–26.CrossRefGoogle Scholar
  73. Thorpe, R. S. (1988). Multiple group principal component analysis and population differentiation. Journal of Zoology, London, 216, 37–40.CrossRefGoogle Scholar
  74. Van Valen, L. (1973). A new evolutionary law. Evolutionary Theory, 1, 1–30.Google Scholar
  75. Weir, J. T., & Schluter, D. (2007). The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science, 315, 1574–1576.PubMedCrossRefGoogle Scholar
  76. Wright, B. W. (2005). Craniodental biomechanics and dietary toughness in the genus Cebus. Journal of Human Evolution, 48, 473–492.Google Scholar
  77. Wright, B. W., Wright, K. A., Chalk, J., Verderane, M. P., Fragaszy, D., Visalberghi, E., et al. (2009). Fallback foraging as a way of life: Using dietary toughness to compare the fallback signal among capuchins and implications for interpreting morphological variation. American Journal of Physical Anthropology, 140, 687–699.PubMedCrossRefGoogle Scholar
  78. Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2004). Geometric morphometrics for biologists. A primer. USA: Elsevier.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Carlo Meloro
    • 1
    Email author
  • Nilton Cáceres
    • 2
  • Francesco Carotenuto
    • 1
  • Jonas Sponchiado
    • 3
  • Geruza Leal Melo
    • 4
  • Federico Passaro
    • 1
  • Pasquale Raia
    • 1
  1. 1.Dipartimento di Scienze della TerraUniversità degli Studi di Napoli ‘Federico II’NaplesItaly
  2. 2.Department of Biology, Laboratory of Ecology and Biogeography, CCNEFederal University of Santa MariaSanta MariaBrazil
  3. 3.Department of Biology, Programa de Pós-Graduaçao em Biodiversidade Animal, CCNEFederal University of Santa MariaSanta MariaBrazil
  4. 4.Programa de Pós-Graduação em Ecologia e Conservação, CCBSUniversidade Federal do Mato Grosso do SulCampo GrandeBrazil

Personalised recommendations