Evolutionary Biology

, Volume 40, Issue 4, pp 601–612 | Cite as

Latitudinal Variation in Starvation Resistance is Explained by Lipid Content in Natural Populations of Drosophila melanogaster

  • Julieta GoenagaEmail author
  • Juan José Fanara
  • Esteban Hasson
Research Article


One of the most common environmental stressors is a shortage or suboptimal quality of food, thus all animals deal with periods of starvation. In the present study we examine variation in starvation resistance, longevity and body lipid content and the correlations between traits along an environmental gradient using isofemale lines recently derived from natural populations of Drosophila melanogaster from South America. The use of isofemale lines and controlled rearing laboratory conditions allows us to investigate within and among population components of genetic variation and the potential associations among starvation resistance, longevity and body lipid content. All these traits were analyzed separately in females and males, improving our understanding of sexual dimorphism. Our results revealed significant differences among populations in starvation resistance and longevity. Actually, the opposing latitudinal cline detected for starvation resistance suggests that natural selection played an essential role in shaping the pattern of geographic variation in this trait. Moreover, we also detected a positive relationship between starvation resistance and body lipid content in both sexes, providing evidence for a physiological and/or evolutionary association between these traits. Conversely, starvation resistance was not correlated with longevity indicating that these traits might be enabled to evolve independently. Finally, our study reveals that there is abundant within population genetic variation for all traits that may be maintained by sex-specific effects.


Genetic correlation Latitudinal cline Genetic variation Genotype × sex interaction Starvation resistance Drosophila melanogaster 



This work was supported by funding from Consejo Nacional de Investigación Científica y Técnica (CONICET), Agencia Nacional de Investigación Científica y Tecnológica (ANPCyT) and Buenos Aires University.


  1. Aguila, J. R., Suszko, J., Gibbs, A. G., & Hoshizaki, D. K. (2007). The role of larval fat cells in adult Drosophila melanogaster. Journal of Experimental Biology, 210(6), 956–963.PubMedCrossRefGoogle Scholar
  2. Archer, M. A., Phelan, J. P., Beckman, K. A., & Rose, M. R. (2003). Breakdown in correlations during laboratory evolution. II. Selection on stress resistance in Drosophila populations. Evolution, 57(3), 536–543.PubMedGoogle Scholar
  3. Arrese, E. L., & Soulages, J. L. (2010). Insect fat body: Energy metabolism and regulation. Annual Review of Entomology, 55, 207–225.PubMedCrossRefGoogle Scholar
  4. Arthur, A. L., Weeks, A. R., & Sgrò, C. M. (2008). Investigating latitudinal clines for life history and stress resistance traits in Drosophila simulans from eastern Australia. Journal of Evolutionary Biology, 21(6), 1470–1479.PubMedGoogle Scholar
  5. Ayroles, J. F., Carbone, M. A., Stone, E. A., Jordan, K. W., Lyman, R. F., et al. (2009). Systems genetics of complex traits in Drosophila melanogaster. Nature Genetics, 41(3), 299–307.PubMedCrossRefGoogle Scholar
  6. Baldal, E. G., Bbrakefield, P. M., & Zwaan, B. J. (2006). Multitrait evolution in lines of Drosophila melanogaster selected for increased starvation resistance: The role of metabolic rate and implications for the evolution of longevity. Evolution, 60(7), 1435–1444.PubMedGoogle Scholar
  7. Ballard, W. O., Melvin, R. G., & Simpson, S. J. (2008). Starvation resistance is positively correlated with body lipid proportion in five wild caught Drosophila simulans populations. Journal of Insect Physiology, 54(9), 1371–1376.PubMedCrossRefGoogle Scholar
  8. Bjedov, I., Toivonen, J. M., Kerr, F., Slack, C., Jacobson, J., Foley, A., et al. (2010). Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metabolism, 11(1), 35–46.PubMedCrossRefGoogle Scholar
  9. Boucher, L., & Huignard, J. (1987). Transfer of male secretions from the spermatophore to the female insect Caryedon serratus (OI.): Analysis of the possible trophic role of these secretions. Journal of Insect Physiology, 33(12), 949–957.CrossRefGoogle Scholar
  10. Boulétreau-Merle, J., & Fouillet, P. (2002). How to overwinter and be a founder: Egg-retention phenotypes and mating status in Drosophila melanogaster. Evolutionary Ecology, 16(4), 309–332.CrossRefGoogle Scholar
  11. Britton, J. S., Lockwood, W. K., Li, L., Cohen, S. M., & Edgar, B. A. (2002). Drosophila’s insulin/pi3-kinase pathway coordinates cellular metabolism with nutritional conditions. Developmental Cell, 2(2), 239–249.PubMedCrossRefGoogle Scholar
  12. Butlin, R. K., Woodhatch, C. W., & Hewitt, G. M. (1987). Male spermatophore investment increases female fecundity in a grasshopper. Evolution, 41(1), 221–225.CrossRefGoogle Scholar
  13. Butterworth, F. M., Bodenstein, D., & King, R. C. (1965). Adipose tissue of Drosophila melanogaster. I. An experimental study of larval fat body. Journal of Experimental Zoology, 158(2), 141–153.PubMedCrossRefGoogle Scholar
  14. Carvalho, G. B., Kapahi, P., Anderson, D. J., & Benzer, S. (2006). Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Current Biology, 16(7), 692–696.PubMedCrossRefGoogle Scholar
  15. Chippindale, A. K., Chu, T. J. F., & Rose, M. R. (1996). Complex trade-offs and the evolution of starvation resistance in Drosophila melanogaster. Evolution, 50(2), 753–766.CrossRefGoogle Scholar
  16. Colombani, J., Raisin, S., Pantalacci, S., Radimerski, T., Montagne, J., & Leopold, P. (2003). A nutrient sensor mechanism controls Drosophila growth. Cell, 114(6), 739–749.PubMedCrossRefGoogle Scholar
  17. De Luca, M., Roshina, N. V., Geiger-Thornsberry, G. L., Lyman, R. F., Pasyukova, E. G., & Mackay, T. F. C. (2003). Dopa decarboxylase (Ddc) affects variation in Drosophila longevity. Nature Genetics, 34(4), 429–433.PubMedCrossRefGoogle Scholar
  18. Edvardsson, M. (2007). Female Callosobruchus maculatus mate when they are thirsty: Resource-rich ejaculates as mating effort in a beetle. Animal Behaviuor, 74(2), 183–188.CrossRefGoogle Scholar
  19. Fairbairn, D. J., Blanckenhorn, W. U., & Székely, T. (2007). Sex size and gender roles: Evolutionary studies of sexual dimorphism. Oxford: Oxford University Press.CrossRefGoogle Scholar
  20. Falconer, D. S. (1952). The problem of environment and selection. American Naturalist, 86(830), 293–298.CrossRefGoogle Scholar
  21. Fallis, L. C., Fanara, J. J., & Morgan, T. J. (2011). Genetic variation in heat-stress tolerance among South American Drosophila populations. Genetica, 139(10), 1331–1337.PubMedCrossRefGoogle Scholar
  22. Folguera, G., Ceballos, S., Spezzi, L., Fanara, J. J., & Hasson, E. (2008). Clinal variation in developmental time and viability and the response to thermal treatments in two species of Drosophila. Biological Journal of the Linnean Society, 95(2), 233–245.CrossRefGoogle Scholar
  23. Force, A. G., Staples, T., Soliman, S., & Arking, R. (1995). Comparative biochemical and stress analysis of genetically selected Drosophila strains with different longevities. Developmental Genetic, 17(4), 340–351.CrossRefGoogle Scholar
  24. Goenaga, J., Fanara, J. J., & Hasson, E. (2010). A quantitative genetic study of starvation resistance at different geographic scales in natural populations of Drosophila melanogaster. Genetic Research, 92(4), 253–259.CrossRefGoogle Scholar
  25. Goenaga, J., Fanara, J. J., & Hasson, E. (2012). The effect of mating on starvation resistance in natural populations of Drosophila melanogaster. Evolutionary Ecology, 26(4), 813–823.CrossRefGoogle Scholar
  26. Griffiths, J. A., Schiffer, M., & Hoffmann, A. A. (2005). Clinal variation and laboratory adaptation in the rainforest species Drosophila birchii for stress resistance wing size wing shape and development time. Journal of Evolutionary Biology, 18(1), 213–222.PubMedGoogle Scholar
  27. Hahn, D. A., & Denlinger, D. L. (2007). Meeting the energetic demands of insect diapause: Nutrient storage and utilization. Journal of Insect Physiology, 53(8), 760–773.PubMedCrossRefGoogle Scholar
  28. Hallas, R., Schiffer, M., & Hoffmann, A. A. (2002). Clinal variation in Drosophila serrata for stress resistance and body size. Genetics Research, 79(2), 141–148.CrossRefGoogle Scholar
  29. Hansen, M., Flatt, T., & Aguilaniu, H. (2013). Reproduction, fat metabolism, and life span: What is the connection? Cell Metabomis, 17(8), 10–19.CrossRefGoogle Scholar
  30. Harbison, S. T., Chang, S., Kamdar, K. P., & Mackay, T. F. C. (2005). Quantitative genomics of starvation stress resistance in Drosophila. Genome Biology, 6, R36. doi: 10.1186/gb-2005-6-4-r36.PubMedCrossRefGoogle Scholar
  31. Harbison, S. T., Yamamoto, A. H., Fanara, J. J., Norga, K. K., & Mackay, T. F. C. (2004). Quantitative trait loci affecting starvation resistance in Drosophila melanogaster. Genetics, 166(4), 1807–1823.PubMedCrossRefGoogle Scholar
  32. Harshman, L. G., & Hoffmann, A. A. (2000). Laboratory selection experiments on life history and stress-related traits in Drosophila: What do they really tell us? Trends in Ecology & Evolution, 15(1), 32–36.CrossRefGoogle Scholar
  33. Harshman, L. G., Hoffmann, A. A., & Clark, A. G. (1999a). Selection for starvation resistance in Drosophila melanogaster: Physiological correlates enzyme activities and multiple stress responses. Journal of Evolutionary Biology, 12(2), 370–379.Google Scholar
  34. Harshman, L. G., Moore, K. M., Sty, M. A., & Magwire, M. M. (1999b). Stress resistance and longevity in selected lines of Drosophila melanogaster. Neurobiology Aging, 20(5), 521–529.CrossRefGoogle Scholar
  35. Harshman, L. G., & Schmid, J. L. (1998). Evolution of starvation resistance in Drosophila melanogaster: Aspects of metabolism and counter-impact selection. Evolution, 52(6), 1679–1685.CrossRefGoogle Scholar
  36. Hoffmann, A. A., Anderson, A., & Hallas, R. (2002). Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecoogy Letters, 5(5), 614–618.CrossRefGoogle Scholar
  37. Hoffmann, A. A., Hallas, R., Anderson, A. R., & Telonis-Scott, M. (2005a). Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. Journal of Evolutionary Biology, 18(4), 804–810.PubMedGoogle Scholar
  38. Hoffmann, A. A., Hallas, R., Sinclair, C., & Mitrovski, P. (2001). Levels of variation in stress resistance in Drosophila among strains local populations and geographic regions: Patterns for desiccation starvation cold resistance and associated traits. Evolution, 55(8), 1621–1630.PubMedGoogle Scholar
  39. Hoffmann, A. A., & Parsons, P. A. (1991). Evolutionary genetics and environmental stress. New York: Oxford University Press.Google Scholar
  40. Hoffmann, A. A., Shirriffs, J., & Scott, M. (2005b). Relative importance of plastic vs genetic factors in adaptive differentiation: Geographical variation for stress resistance in Drosophila melanogaster from eastern Australia. Functional Ecology, 19(2), 222–227.CrossRefGoogle Scholar
  41. Ivy, T. M., Johnson, J. C., & Sakaluk, S. K. (1999). Hydration benefits to courtship feeding in crickets. Proceedings of the Royal Society of London. Series B, 266(1428), 1523–1527.CrossRefGoogle Scholar
  42. Izquierdo, J. I. (1991). How does Drosophila melanogaster overwinter? Entomologia Experimentalis et Applicata, 59(1), 51–58.CrossRefGoogle Scholar
  43. Jumbo-Lucioni, P., Ayroles, J. F., Chambers, M. M., Jordan, K. W., Leips, J., Mackay, T. F. C., et al. (2010). Systems genetics analysis of body weight and energy metabolism traits in Drosophila melanogaster. BMC Genomics, 11, 297–310.PubMedCrossRefGoogle Scholar
  44. Kapahi, P., Zid, B. M., Harper, T., Koslover, D., Sapin, V., & Benzer, S. (2004). Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Current Biology, 14(10), 885–890.PubMedCrossRefGoogle Scholar
  45. Karan, D., Dahiya, N., Munjal, A. K., Gibert, P., Moreteau, B., Parkash, R., et al. (1998). Desiccation and starvation tolerance of adult Drosophila: Opposite latitudinal clines in natural populations of three different species. Evolution, 52(3), 825–831.CrossRefGoogle Scholar
  46. Karan, D., & Parkash, R. (1998). Desiccation tolerance and starvation resistance exhibit opposite latitudinal clines in Indian geographical populations of Drosophila kikkawai. Ecological Entomology, 23(4), 391–396.CrossRefGoogle Scholar
  47. Kenny, M., Wilton, A., & Ballard, W. O. (2008). Seasonal trade-off between starvationresistance and cold resistance in temperate wild-caught Drosophila simulans. Australian Journal of Entomology, 47(1), 20–23.CrossRefGoogle Scholar
  48. Lavagnino, N. J., Anholt, R. R., & Fanara, J. J. (2008). Variation in genetic architecture of olfactory behaviour among wild-derived populations of Drosophila melanogaster. Journal of Evolutionary Biology, 21(4), 988–996.PubMedGoogle Scholar
  49. Lee, G. H., & Park, J. H. (2004). Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone encoding gene in Drosophila melanogaster. Genetics, 167(1), 311–323.PubMedCrossRefGoogle Scholar
  50. Lynch, M., & Walsh, B. (1998). Genetics and analysis of quantitative traits. Sunderland: Sinauer.Google Scholar
  51. Magwire, M. M., Yamamoto, A., Carbone, M. A., Roshina, N. V., Symonenko, A. V., Pasyukova, E. G., et al. (2010). Quantitative and molecular genetic analyses of mutations increasing Drosophila life span. PLoS Genetics, 6(7), e1001037.PubMedCrossRefGoogle Scholar
  52. Markow, T. A., & O’Grady, P. M. (2008). Reproductive ecology of Drosophila. Functional Ecology, 22(5), 747–759.CrossRefGoogle Scholar
  53. Mensch, J., Carreira, V., Lavagnino, N., Goenaga, J., Folguera, G., Hasson, E., et al. (2010). Stage-specific effects of Candidate heterochronic genes on variation in developmental time along an altitudinal cline of Drosophila melanogaster. PLoS ONE, 5(6), e11229.PubMedCrossRefGoogle Scholar
  54. Mitrovski, P., & Hoffmann, A. A. (2001). Postponed reproduction as an adaptation to winter conditions in Drosophila melanogaster: Evidence for clinal variation under semi-natural conditions. Proceedings of the Royal Society. B, 268(1481), 2163–2168.PubMedCrossRefGoogle Scholar
  55. Muir, W. M., Nyquist, Y., & Xu, S. (1992). Alternative partitioning of the genotype by environment interaction. Theoretical and Applied Genetics, 84, 193–200.PubMedCrossRefGoogle Scholar
  56. Parkash, R., & Aggarwal, D. D. (2012). Trade-off of energy metabolites as well as body color phenotypes for starvation and desiccation resistance in montane populations of Drosophila melanogaster. Comparative Biochemistry and Physiology Part A, 161(2), 102–113.CrossRefGoogle Scholar
  57. Parkash, R., & Munjal, A. K. (2000). Evidence of independent climatic selection for desiccation and starvation tolerance in Indian tropical populations of Drosophila melanogaster. Evolutionary Ecology Research, 2(5), 685–699.Google Scholar
  58. Pasyukova, E. G., Roshina, N. V., & Mackay, T. F. C. (2004). Shuttle craft: A candidate quantitative trait gene for Drosophila lifespan. Aging Cell, 3(5), 297–307.PubMedCrossRefGoogle Scholar
  59. Phelan, J. P., Archer, M. A., Beckman, K. A., Chippindale, A. K., Nusbaum, T. J., & Rose, M. R. (2003). Breakdown in correlations during laboratory evolution. I. Comparative analyses of Drosophila populations. Evolution, 57(3), 527–535.PubMedGoogle Scholar
  60. Quinn, G. P., & Keough, M. J. (2002). Experimental Design and Data Analysis for Biologists. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  61. Randall, D., Burggren, W., & French, K. (1997). Eckert animal physiology: Mechanisms and adaptations (4th ed.). New York: W.H. Freeman Company.Google Scholar
  62. Rice, W. R., & Chippindale, A. K. (2002). The evolution of hybrid infertility: Perpetual coevolution between gender-specific and sexual antagonistic genes. Genetica, 116(2–3), 179–188.PubMedCrossRefGoogle Scholar
  63. Rion, S., & Kawecki, T. J. (2007). Evolutionary biology of starvation resistance: What we have learned from Drosophila. Journal of Evolutionary Biology, 20(5), 1655–1664.PubMedGoogle Scholar
  64. Robertson, A. (1959). The sampling variance of the genetic correlation coefficient. Biometric, 15(3), 469–485.CrossRefGoogle Scholar
  65. Robinson, S. J. W., Zwaan, B., & Partridge, L. (2000). Starvation resistance and adult body composition in a latitudinal cline of Drosophila melanogaster. Evolution, 54(5), 1819–1824.PubMedGoogle Scholar
  66. Rose, M. R., Vu, L. N., Park, S. U., & Graves, J. L. (1992). Selection on stress resistance increases longevity in Drosophila melanogaster. Experimental Gerontology, 27(2), 241–250.PubMedCrossRefGoogle Scholar
  67. Rush, B., Sandver, S., Bruer, J., Roche, R., Wells, M., & Giebultowicz, J. (2007). Mating increases starvation resistance and decreases oxidative stress resistance in Drosophila melanogaster females. Aging Cell, 6(5), 723–726.PubMedCrossRefGoogle Scholar
  68. Salmon, A. B., Marx, D. B., & Harshman, L. G. (2001). A cost of reproduction in Drosophila melanogaster: Stress susceptibility. Evolution, 55(8), 1600–1608.PubMedGoogle Scholar
  69. Schmidt, P. S., Matzkin, L., Ippolito, M., & Eanes, W. F. (2005a). Geographic variation in diapause incidence life-history traits and climatic adaptation in Drosophila melanogaster. Evolution, 59(8), 1721–1732.PubMedGoogle Scholar
  70. Schmidt, P. S., & Paaby, A. B. (2008). Reproductive diapause and life-history clines in North American populations of Drosophila melanogaster. Evolution, 62(5), 1204–1215.PubMedCrossRefGoogle Scholar
  71. Schmidt, P. S., Paaby, A. B., & Heschel, M. S. (2005b). Genetic variance for diapauses expression and associated life histories in Drosophila melanogaster. Evolution, 59(12), 2616–2625.PubMedGoogle Scholar
  72. Schwasinger-Schmidt, T. E., Kachman, S. D., & Harshman, L. G. (2012). Evolution of starvation resistance in Drosophila melanogaster: Measurement of direct and correlated responses to artificial selection. Journal of Evolutionary Biology, 25(2), 378–387.PubMedGoogle Scholar
  73. Service, P. M., Hutchinson, E. W., Mackinley, M. D., & Rose, M. R. (1985). Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiological Zoology, 58(4), 380–389.Google Scholar
  74. Sisodia, S., & Singh, B. N. (2010). Resistance to environmental stress in Drosophila ananassae: Latitudinal variation and adaptation among populations. Journal of Evolutionary Biology, 23(9), 1979–1988.PubMedCrossRefGoogle Scholar
  75. Slack, C., Werz, C., Wieser, D., Alic, N., Foley, A., Stocke, H., et al. (2010). Regulation of lifespan metabolism and stress responses by the Drosophila SH2B protein Lnk. PLoS Genetics. doi: 10.1371/journal.pgen.1000881.Google Scholar
  76. StatSoft (2007). Methods and applications. Version 8.0 StatSoft Tulsa.Google Scholar
  77. Vieira, C., Pasyukova, E. G., Zeng, A., Hackett, J. B., Lyman, R. F., & Mackay, T. F. C. (2000). Genotype-environment interaction for quantitative trait loci affecting life span in Drosophila melanogaster. Genetics, 154(1), 213–227.PubMedGoogle Scholar
  78. Wang, M., Harshman, L. G., & Nuzhdin, S. V. (2005). Quantitative trait loci for lipid content in Drosophila melanogaster. Obesity Research, 13(11), 1891–1897.PubMedCrossRefGoogle Scholar
  79. Wang, M., Lazebny, O., Harshman, L. G., & Nuzhdin, S. V. (2004). Environment-dependent survival of Drosophila melanogaster: A quantitative genetic analysis. Aging Cell, 3(4), 133–140.PubMedCrossRefGoogle Scholar
  80. Wayne, M., Soundararajan, U., & Harshman, L. (2006). Environmental stress and reproduction in Drosophila melanogaster: Starvation resistance ovariole numbers and early age egg production. BMC Evolutionary Biology. doi: 10.1186/1471-2148-6-57.PubMedGoogle Scholar
  81. Zhang, H., Stallock, J. P., Ng, J. C., Reinhard, C., & Neufeld, T. P. (2000). Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes & Development, 14(21), 2712–2724.CrossRefGoogle Scholar
  82. Ziegler, R., & Van Antwerpen, R. (2006). Lipid uptake by insect oocytes. Insect Biochemistry and Molecular Biology, 36(4), 264–272.PubMedCrossRefGoogle Scholar
  83. Zwaan, B., Bijlsma, R., & Hoekstra, R. F. (1995). Direct selection on life span in Drosophila melanogaster. Evolution, 49(4), 649–659.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Julieta Goenaga
    • 1
    • 2
    Email author
  • Juan José Fanara
    • 1
  • Esteban Hasson
    • 1
  1. 1.Instituto de Ecología Genética y Evolución de Buenos Aires, Departamento de Ecología Genética y Evolución, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden

Personalised recommendations