Evolutionary Biology

, Volume 40, Issue 4, pp 554–561 | Cite as

Obligate Brood Parasites Show More Functionally Effective Innate Immune Responses: An Eco-immunological Hypothesis

  • D. Caldwell Hahn
  • Scott G. Summers
  • Kenneth J. Genovese
  • Haiqi He
  • Michael H. Kogut
Research Article

Abstract

Immune adaptations of obligate brood parasites attracted interest when three New World cowbird species (Passeriformes, Icteridae, genus Molothrus) proved unusually resistant to West Nile virus. We have used cowbirds as models to investigate the eco-immunological hypothesis that species in parasite-rich environments characteristically have enhanced immunity as a life history adaptation. As part of an ongoing program to understand the cowbird immune system, in this study we measured degranulation and oxidative burst, two fundamental responses of the innate immune system. Innate immunity provides non-specific, fast-acting defenses against a variety of invading pathogens, and we hypothesized that innate immunity experiences particularly strong selection in cowbirds, because their life history strategy exposes them to diverse novel and unpredictable parasites. We compared the relative effectiveness of degranulation and oxidative burst responses in two cowbird species and one related, non-parasitic species. Both innate immune defenses were significantly more functionally efficient in the two parasitic cowbird species than in the non-parasitic red-winged blackbird (Icteridae, Agelaius phoeniceus). Additionally, both immune defenses were more functionally efficient in the brown-headed cowbird (M. ater), an extreme host-generalist brood parasite, than in the bronzed cowbird (M. aeneus), a moderate host-specialist with lower exposure to other species and their parasites. Thus the relative effectiveness of these two innate immune responses corresponds to the diversity of parasites in the niche of each species and to their relative resistance to WNV. This study is the first use of these two specialized assays in a comparative immunology study of wild avian species.

Keywords

Host-parasite coevolution Brood parasite Cowbird Degranulation Eco-immunology Parasite-mediated selection Innate immunity Oxidative burst 

References

  1. Adamo, S. A. (2004). How should behavioural ecologists interpret measurements of immunity? Animal Behaviour, 68, 1443–1449.CrossRefGoogle Scholar
  2. Anderem, A., & Underhill, D. M. (1997). Mechanism of phagocytosis in macrophages. Annual Review of Immunology, 17, 593–623.CrossRefGoogle Scholar
  3. Apanius, V., & Nisbet, I. C. T. (2006). Serum immunoglobulin G levels are positively related to reproductive performance in a long-lived seabird, the common tern (Sterna hirundo). Oecologia, 147(1), 12–23.PubMedCrossRefGoogle Scholar
  4. Ardia, D. R. (2007). The ability to mount multiple immune responses simultaneously varies across the range of the tree swallow. Ecography, 30(1), 23–30.Google Scholar
  5. Blount, J. D., Houston, D. C., Moller, A. P., & Wright, J. (2003). Do individual branches of immune defence correlate? A comparative case study of scavenging and non-scavenging birds. Oikos, 102(2), 340–350.CrossRefGoogle Scholar
  6. Boyen, F., Pasmans, F., Van Immerseel, F., Donne, E., Morgan, E., Ducatelle, R., et al. (2009). Porcine in vitro and in vivo models to assess the virulence of Salmonella enterica serovar Typhimurium for pigs. Laboratory Animals, 43(1), 46–52.PubMedCrossRefGoogle Scholar
  7. Buehler, D. M., Tieleman, B. I., & Piersma, T. (2009). Bottlenecks, budgets and immunity: The possibility of immune strategies in long distance migrant birds. Integrative and Comparative Biology, 49, E22–E22.Google Scholar
  8. Colwell, M. A. (1986). Intraspecific brood parasitism in three species of prairie-breeding shorebirds. Wilson Bulletin, 93(3), 473–475.Google Scholar
  9. Davies, N. B. (2000). Cuckoos, cowbirds, and other cheats (p. 310). London: Poyser.Google Scholar
  10. Demas, G. E., & Nelson, R. J. (Eds.). (2012). Ecoimmunology. Oxford: Oxford University Press.Google Scholar
  11. Demas, G. E., Zysling, D. A., Beechler, B. R., Muehlenbein, M. P., & French, S. S. (2011). Beyond phytohaemagglutinin: Assessing vertebrate immune function across ecological contexts. Journal of Animal Ecology, 80, 710–730.PubMedCrossRefGoogle Scholar
  12. Dolbeer, R. A. (2003). Population dynamics of the most abundant bird in North America: The red-winged blackbird. Fort Collins, CO: The Wildlife Society.Google Scholar
  13. Ehrlich, P. R., Dobkin, D. S., & Wheye, D. (1988). The Birder’s handbook: A field guide to the natural history of North American birds. New York: Simon and Schuster.Google Scholar
  14. Ellison, K., & Lowther, P. E. (2009). Bronzed Cowbird (Molothrus aeneus). In A. Poole (Ed.), The Birds of North America Online. Ithaca: Cornell Lab of Ornithology.Google Scholar
  15. Ferro, P. J., Swaggerty, C. L., He, H., Rothwell, L., Kaiser, P., & Kogut, M. H. (2005). Recombinant chicken IL-6 does not activate heterophils isolated from day-old chickens in vitro. Developmental and Comparative Immunology, 29(4), 375–383.PubMedCrossRefGoogle Scholar
  16. Friedmann, H. (1929). The cowbirds: A study in the biology of social parasitism. Baltimore: Charles C. Thomas.Google Scholar
  17. Friedmann, H., Kiff, L. F., & Rothstein S. I. (1977). A further contribution to knowledge of the host relations of the parasitic cowbirds (pp. 1–75). Washington, DC: Smithsonian Institution Press.Google Scholar
  18. Godoy-Vitorino, F., Ley, R. E., Gao, Z., Pei, Z. H., Ortiz-Zuazaga, H., Pericchi, L. R., et al. (2008). Bacterial community in the crop of the hoatzin, a neotropical folivorous flying bird. Applied and Environmental Microbiology, 74(19), 5905–5912.PubMedCrossRefGoogle Scholar
  19. Hahn, D. C., & Fleischer, R. C. (1995). DNA fingerprint similarity between female and juvenile brown-headed cowbirds trapped together. Animal Behaviour, 49(6), 1577–1580.CrossRefGoogle Scholar
  20. Hahn, D. C., Igl, L. D., Burnett, J., & Erf, G. (2012). Evidence of parasite-mediated selection favoring evolution of more effective immune defenses: More immune constituents in eggs of avian brood parasites. Integrative and Comparative Biology, 52(Supplement 1), E71.Google Scholar
  21. Hahn, D. C., Price, R. D., & Osenton, P. C. (2000). Use of lice to identify cowbird hosts. Auk, 117(4), 943–951.Google Scholar
  22. Hahn, D. C., & Reisen, W. K. (2011). Heightened exposure to parasites favors the evolution of immunity in brood parasitic cowbirds. Evolutionary Biology, 38(2), 214–224.CrossRefGoogle Scholar
  23. Hahn, D. C., Sedgwick, J. A., Painter, I., & Casna, N. J. (1999). The spatial and genetic basis of host selection. In M. L. Morrison, L. S. Hall, S. K. Robinson, S. I. Rothstein, D. C. Hahn, & T. D. Rich (Eds.), Research and management of the brown-headed Cowbird in Western Landscapes (pp. 204–217). Lawrence, KS.: Cooper Ornithological Society.Google Scholar
  24. Hahn, D. C., & Smith, G. W. (2011). Life history trade-offs between longevity and immunity in the parasitic brown-headed Cowbird? Open Evolution Journal, 5, 8–13.CrossRefGoogle Scholar
  25. Haussmann, M. F., Winkler, D. W., Huntington, C. E., Vleck, D., Sanneman, C. E., Hanley, D., et al. (2005). Cell-mediated immunosenescence in birds. Oecologia, 145(2), 270–275.PubMedCrossRefGoogle Scholar
  26. Hawley, D. M., & Altizer, S. M. (2011). Disease ecology meets ecological immunology: Understanding the links between organismal immunity and infection dynamics in natural populations. Functional Ecology, 25, 48–60.CrossRefGoogle Scholar
  27. Hayden, T. J., Tazik, D. J., Melton, R. H., & Cornelius, J. D. (2000). Cowbird control program at Fort Hood, Texas: Lessons for mitigation of Cowbird parasitism on a landscape scale. In J. N. M. Smith, T. L. Cook, S. I. Rothstein, S. K. Robinson, & S. G. Sealy (Eds.), Ecology and management of Cowbirds and their hosts (pp. 357–370). Austin: University of Texas Press.Google Scholar
  28. He, H., Crippen, T. L., Farnell, M. B., & Kogut, M. H. (2003). Identification of CpG oligodeoxynucleotide motifs that stimulate nitric oxide and cytokine production in avian macrophage and peripheral blood mononuclear cells. Developmental and Comparative Immunology, 27, 651–657.CrossRefGoogle Scholar
  29. Hofmeister, E. K. (2011). West Nile virus: North American experience. Integrative Zoology, 6(3), 279–289.PubMedCrossRefGoogle Scholar
  30. Horrocks, N. P. C., Hegemann, A., Matson, K., Hine K, Jaquier S, Shobrak M, et al. (2012). Immune indexes of larks from desert and temperate regions show weak associations with life history but stronger links to environmental variation in microbial abundance. Physiological and Biochemical Zoology, 85(5), 504–515.PubMedCrossRefGoogle Scholar
  31. Hume, D. A. (2006). The mononuclear phagocyte system. Current Opinion in Immunology, 18, 49–53.PubMedCrossRefGoogle Scholar
  32. Janeway, C. A., & Medzhitov, R. (2002). Innate immune recognition. Annual Review of Immunology, 20, 197–216.PubMedCrossRefGoogle Scholar
  33. Janeway, C. A., Travers, P., Walport, M., & Schlomchik, M. (2001). Immunobiology. New York: Garland Publishing.Google Scholar
  34. Jaramillo, A., & Burke, P. (1999). New world blackbirds: The Icterids (p. 431). Princeton, New Jersey: Princeton University Press.Google Scholar
  35. Joyner, D. E. (1976). Effects of interspecific nest parasitism by redheads and ruddy ducks. The Journal of Wildlife Management, 40(1), 33–38.CrossRefGoogle Scholar
  36. Kilpatrick, A. M., LaDeau, S. L., & Marra, P. P. (2007). Ecology of West Nile virus transmission and its impact on birds in the western hemisphere. Auk, 124(4), 1121–1136.CrossRefGoogle Scholar
  37. Kogut, M. H., Genovese, K. J., He, H., Li, M. A., & Jiang, Y. W. (2007). The effects of the BT/TAMUS 2032 cationic peptides on innate immunity and susceptibility of young chickens to extraintestinal Salmonella enterica serovar Enteritidis infection. International Immunopharmacology, 7(7), 912–919.PubMedCrossRefGoogle Scholar
  38. Kogut, M. H., Genovese, K. J., & Lowry, V. K. (2001). Differential activation of signal transduction pathways mediating phagocytosis, oxidative burst, and degranulation by chicken heterophils in response to stimulation with opsonised Salmonella enteritidis. Inflammation, 25, 7–15.PubMedCrossRefGoogle Scholar
  39. Komar, N., Langevin, S., Hinten, S., Nemeth, N., Edwards, E., Hettler, D., et al. (2003). Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerging Infectious Diseases, 9(3), 311–322.PubMedCrossRefGoogle Scholar
  40. Kostecke, R. M., Ellison, K., & Summers, S. G. (2004). Continued range expansion by bronzed cowbirds in the southwestern United States. Southwestern Naturalist, 49(4), 487–492.CrossRefGoogle Scholar
  41. Krakauer, A. H., & Kimball, R. T. (2009). Interspecific brood parasitism in galliform birds. Ibis, 151(2), 373–381.CrossRefGoogle Scholar
  42. Kyle, P., & Kyle, G. (1990). An evaluation of the role of microbial flora in the salivary transfer technique for hand-rearing Chimney Swifts. In: Ludwig, D. R. (Ed.), Wildlife rehabilitation: Selected papers presented at the eighth symposium of the national wildlife rehabilitators Association. Ithaca, New York, March 21–25; Ithaca, NY, pp. 65–72.Google Scholar
  43. Lanyon, S. M., & Omland, K. E. (1999). A molecular phylogeny of the blackbirds (Icteridae): Five lineages revealed by cytochrome-b sequence data. Auk, 116(3), 629–639.CrossRefGoogle Scholar
  44. Lee, K. A., & Klasing, K. C. (2004). A role for immunology in invasion biology. Trends in Ecology & Evolution, 19(10), 523–529.CrossRefGoogle Scholar
  45. Lee, K. A., Martin, L. B., Hasselquist, D., Ricklefs, R. E., & Wikelski, M. (2006). Contrasting adaptive immune defenses and blood parasite prevalence in closely related Passer sparrows. Oecologia, 150(3), 383–392.PubMedCrossRefGoogle Scholar
  46. Lee, K. A., Martin, L. B., & Wikelski, M. C. (2005). Responding to inflammatory challenges is less costly for a successful avian invader, the house sparrow (Passer domesticus), than its less-invasive congener. Oecologia, 145(2), 244–251.PubMedCrossRefGoogle Scholar
  47. Lee, K. A., Wikelski, M., Robinson, W. D., Robinson, T. R., & Klasing, K. C. (2008). Constitutive immune defences correlate with life-history variables in tropical birds. Journal of Animal Ecology, 77(2), 356–363.PubMedCrossRefGoogle Scholar
  48. Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., et al. (2008). Evolution of mammals and their gut microbes. Science, 320(5883), 1647–1651.PubMedCrossRefGoogle Scholar
  49. Lindstrom, K. M., Foufopoulos, J., Parn, H., & Wikelski, M. (2004). Immunological investments reflect parasite abundance in island populations of Darwin’s finches. Proceedings of the Royal Society of London Series B-Biological Sciences, 271(1547), 1513–1519.CrossRefGoogle Scholar
  50. Lowther, P. E. (1993). Brown-headed Cowbird (Molothrus ater). In Poole, A. (Ed.), The Birds of North America Online: http://bna.birds.cornell.edu/bna/species/047. Ithaca: Cornell Lab of Ornithology.
  51. Matson, K. D., Cohen, A. A., Klasing, K. C., Ricklefs, R. E., & Scheuerlein, A. (2006). No simple answers for ecological immunology: Relationships among immune indices at the individual level break down at the species level in waterfowl. Proceedings of the Royal Society B-Biological Sciences, 273(1588), 815–822.CrossRefGoogle Scholar
  52. Mendes, L., Piersma, T., Hasselquist, D., Matson, K. D., & Ricklefs, R. E. (2006). Variation in the innate and acquired arms of the immune system among five shorebird species. Journal of Experimental Biology, 209(2), 284–291.PubMedCrossRefGoogle Scholar
  53. Merrill, L., O’Loghlen, A. L., Wingfield, J. C., & Rothstein, S. I. (2013). Immune function in an avian brood parasite and its nonparasitic relative. Physiological and Biochemical Zoology, 86(1), 61–72.PubMedCrossRefGoogle Scholar
  54. Millet, S., Bennett, J., Lee, K. A., Hau, M., & Klasing, K. C. (2007). Quantifying and comparing constitutive immunity across avian species. Developmental and Comparative Immunology, 31(2), 188–201.PubMedCrossRefGoogle Scholar
  55. Moller, A. P. (1997). Parasitism and the evolution of host life history. In D. H. Clayton & J. Moore (Eds.), Host-parasite evolution: General principles and avian models (pp. 105–127). Oxford: Oxford University Press.Google Scholar
  56. Ortega, C. (1998). Cowbirds and other Brood Parasites. Tucson, AZ: University of Arizona Press.Google Scholar
  57. Papp, Z., & Smits, J. E. G. (2007). Validation and novel applications of the whole-blood chemiluminescence assay of innate immune function in wild vertebrates and domestic chickens. Journal of Wildlife Diseases, 43(4), 623–634.PubMedCrossRefGoogle Scholar
  58. Piersma, T. (1997). Do global patterns of habitat use and migration strategics co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure? Oikos, 80(3), 623–631.CrossRefGoogle Scholar
  59. Rausch, R. L. (1983). Biology of avian parasites: Helminths. In D. Farner & J. King (Eds.), Avian biology (pp. 367–442). New York: Academic Press.CrossRefGoogle Scholar
  60. Reisen, W. K., Chiles, R. E., Martinez, V. M., Fang, Y., & Green, E. N. (2003). Experimental infection of California birds with western equine encephalomyelitis and St. Louis encephalitis viruses. Journal of Medical Entomology, 40, 968–982.PubMedCrossRefGoogle Scholar
  61. Reisen, W. K., & Hahn, D. C. (2007). Comparison of immune responses of brown-headed cowbird and related blackbirds to West Nile and other mosquito-borne encephalitis viruses. Journal of Wildlife Diseases, 43(3), 439–449.PubMedCrossRefGoogle Scholar
  62. Rothstein, S. I., & Robinson, S. K. (1998). The evolution and ecology of avian brood parasitism: An overview. In S. I. Rothstein & S. K. Robinson (Eds.), Parasitic birds and their hosts: Studies in coevolution (pp. 3–7). New York: Oxford University Press.Google Scholar
  63. Sauer, J. R., Hines, J. E., & Fallon, J. (2005). The North American breeding bird survey, results and analysis, 1966-2005, v. 6.2.2006. Laurel, MD: USGS Patuxent Wildlife Research Center.Google Scholar
  64. Schmid-Hempel, P. (2003). Variation in immune defence as a question of evolutionary ecology. Proceedings of the Royal Society of London Series B-Biological Sciences, 270(1513), 357–366.CrossRefGoogle Scholar
  65. Schmid-Hempel, P. (2011). Evolutionary parasitology: The integrated study of infections, immunology, ecology, and genetics. Oxford: Oxford University Press.Google Scholar
  66. Schulenburg, H., Kurtz, J., Moret, Y., & Siva-Jothy, M. T. (2009). Introduction: Ecological immunology. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 364(1513), 3–14.PubMedCrossRefGoogle Scholar
  67. Scott, D. M., & Ankney, C. D. (1983). The laying cycle of brown-headed cowbirds: Passerine chickens? Auk, 100, 583–593.Google Scholar
  68. Semela, B., & Sherman, P. W. (2001). Intraspecific parasitism and nest-site competition in wood ducks. Animal Behaviour, 61(4), 787–803.CrossRefGoogle Scholar
  69. Serbina, N. V., Jia, T., Hohl, T. M., & Pamer, E. G. (2008). Monocyte-mediated defense against microbial pathogens. Annual Review of Immunology, 26, 421–452.PubMedCrossRefGoogle Scholar
  70. Sibley, D. A. (2000). The Sibley guide to birds (p. 544). New York: Alfred A. Knopf.Google Scholar
  71. Sild, E., & Hõrak, P. (2010). Assessment of oxidative burst in avian whole blood samples: Validation and application of a chemiluminescence method based on Pholasin. Behavioral Ecology and Sociobiology, 64(12), 2065–2076.CrossRefGoogle Scholar
  72. Swaggerty, C. L., Pevzner, I. Y., Ferro, P. J., Crippen, T. L., & Kogut, M. H. (2003). Association between in vitro heterophil function and the feathering gene in commercial broiler chickens. Avian Pathology, 32(5), 483–488.PubMedCrossRefGoogle Scholar
  73. Tella, J. L., Scheuerlein, A., & Ricklefs, R. E. (2002). Is cell-mediated immunity related to the evolution of life-history strategies in birds? Proceedings of the Royal Society of London Series B-Biological Sciences, 269(1495), 1059–1066.CrossRefGoogle Scholar
  74. Tukel, C., Raffatellu, M., Chessa, D., Wilson, R. P., Akcelik, M., & Baumler, A. J. (2006). Neutrophil influx during non-typhoidal salmonellosis: Who is in the driver’s seat? FEMS Immunology and Medical Microbiology, 46(3), 320–329.PubMedCrossRefGoogle Scholar
  75. Yasukawa, K, & Searcy, W. A. (Eds.). (1995). Red-winged blackbird (Agelaius phoeniceus). http://bna.birds.cornell.edu/bna/species/184ed. Ithaca, NY: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online.

Copyright information

© Springer Science+Business Media New York (outside the USA) 2013

Authors and Affiliations

  • D. Caldwell Hahn
    • 1
  • Scott G. Summers
    • 2
  • Kenneth J. Genovese
    • 3
  • Haiqi He
    • 3
  • Michael H. Kogut
    • 3
  1. 1.USGS-Patuxent Wildlife Research CenterLaurelUSA
  2. 2.The Nature ConservancyKilleenUSA
  3. 3.Southern Plains Agricultural Research CenterUSDA-ARSCollege StationUSA

Personalised recommendations