Evolutionary Biology

, Volume 40, Issue 4, pp 504–520 | Cite as

Complexity by Subtraction

  • Daniel W. McShea
  • Wim HordijkEmail author
Research Article


The eye and brain: standard thinking is that these devices are both complex and functional. They are complex in the sense of having many different types of parts, and functional in the sense of having capacities that promote survival and reproduction. Standard thinking says that the evolution of complex functionality proceeds by the addition of new parts, and that this build-up of complexity is driven by selection, by the functional advantages of complex design. The standard thinking could be right, even in general. But alternatives have not been much discussed or investigated, and the possibility remains open that other routes may not only exist but may be the norm. Our purpose here is to introduce a new route to functional complexity, a route in which complexity starts high, rising perhaps on account of the spontaneous tendency for parts to differentiate. Then, driven by selection for effective and efficient function, complexity decreases over time. Eventually, the result is a system that is highly functional and retains considerable residual complexity, enough to impress us. We try to raise this alternative route to the level of plausibility as a general mechanism in evolution by describing two cases, one from a computational model and one from the history of life.


Evolution Complexity Constructive neutral evolution Irreducible complexity ZFEL 



The main ideas described in this paper originated at a catalysis meeting at the National Evolutionary Synthesis Center (NESCent) in Durham, NC, USA. They were developed further and finalized into the current paper during a subsequent short-term research visit of WH at, and supported by, NESCent. We thank Robert Brandon for suggesting the apt and evocative phrase “complexity by subtraction.” Finally, one of us (DM) would like to thank Benedikt Hallgrimsson for discussions decades ago, discussions that turned out to be foundational in the development of the ZFEL.


  1. Adamowicz, S. J., Purvis, A., & Wills, M. A. (2008). Increasing morphological complexity in multiple parallel lineages of the Crustacea. Proceedings of the National Academy of Sciences, 105, 4786–4791.CrossRefGoogle Scholar
  2. Alroy, J. (2001). Understanding the dynamics of trends within evolving lineages. Paleobiology, 26, 319–329.CrossRefGoogle Scholar
  3. Boerlijst, M., & Hogeweg, P. (1991). Self-structuring and selection: Spiral waves as a substrate for prebiotic evolution. In C. G. Langton, C. Taylor, J. D. Farmer & S. Rasmussen (Eds.), Artifial life II (pp. 55–276). Reading: Addison-Wesley.Google Scholar
  4. Bonner, J. T. (1988). The evolution of complexity by means of natural selection. Princeton: Princeton University Press.Google Scholar
  5. Brown, T. A., & McBurnett, M. D. (1996). The emergence of political elites. In M. Coombs & M. Sulcoski (Eds.), Proceedings of the International Workshop on Control Mechanisms for Complex Systems (pp. 143–161).Google Scholar
  6. Buchholtz, E. A., & Wolkovich, E. H. (2005). Vertebral osteology and complexity in Lagenorhynchus acutus. Marine Mammal Science, 21, 411–428.CrossRefGoogle Scholar
  7. Burks, A. W. (Ed) (1970). Essays on cellular automata. Urbana: University of Illinois Press.Google Scholar
  8. Cisne, J. L. (1974). Evolution of the world fauna of aquatic free-living arthropods. Evolution, 28, 337–366.CrossRefGoogle Scholar
  9. Crutchfield, J. P., & Hanson, J. E. (1993). Turbulent pattern bases for cellular automata. Physica D, 69, 279–301.CrossRefGoogle Scholar
  10. Crutchfield, J. P., & Mitchell, M. (1995). The evolution of emergent computation. Proceedings of the National Academy of Sciences, 92(23), 10742–10746.CrossRefGoogle Scholar
  11. Darwin, C. (1859). On the origin of species. London: J. Murray.Google Scholar
  12. Darwin, C. (1862). On the various contrivances by which British and foreign orchids are fertilised by insects, and on the food effects of intercrossing. London: J. Murray.Google Scholar
  13. Das, R., Mitchell, M., Crutchfield, J. P. (1994). A genetic algorithm discovers particle-based computation in cellular automata. In Y. Davidor, H. P. Schwefel & R. Manner (Eds.), Parallel problem solving from nature—PPSN III (pp. 344–353). Berlin: Springer.CrossRefGoogle Scholar
  14. Das, R., Crutchfield, J. P., Mitchell, M., & Hanson, J. E. (1995). Evolving globally synchronized cellular automata. In L. J. Eshelman (Ed.), Proceedings of the Sixth International Conference on Genetic Algorithms (pp. 336–343). Los Altos: Morgan Kaufmann.Google Scholar
  15. Dembski, W. A., & Ruse, M. (Eds.) (2004). Debating design. Cambridge: Cambridge University Press.Google Scholar
  16. Doolittle, W. F. (2012). A ratchet for protein complexity. Nature, 481, 270–271.PubMedGoogle Scholar
  17. Ermentrout, G. B., & Edelstein-Keshet, L. (1993). Cellular automata approaches to biological modeling. Journal of Theoretical Biology, 160, 97–133.CrossRefPubMedGoogle Scholar
  18. Esteve-Altava, B., Marugán-Lobón, J., Botella, H., & Rasskin-Gutman, D. (2012). Structural constraints in the evolution of the tetrapod skull complexity: Willistons Law revisited using network models. Evolutionary Biology. doi: 10.1007/s11692-012-9200-9.
  19. Finnigan, G. C., Hanson-Smith, V., Stevens, T. H., & Thornton, J. W. (2012). Evolution of increased complexity in a molecular machine. Nature, 481, 360–364.PubMedGoogle Scholar
  20. Gardner, M. (1970). The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223(120), 123.Google Scholar
  21. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. New York: W. H. Freeman.Google Scholar
  22. Goldberg, D. E. (1989) Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley.Google Scholar
  23. Gray, M. W., Lukeš, J., Archibald, J. M., Keeling, P. J., & Doolittle, W. F. (2010). Irremediable complexity? Science, 330, 920–921.Google Scholar
  24. Gregory, W. K. (1934). Polyisomerism and anisomerism in cranial and dental evolution among vertebrates. Proceedings of the National Academy of Sciences, 20, 1–9.CrossRefGoogle Scholar
  25. Gregory, W. K. (1935). Reduplication in evolution. Quarterly Review of Biology, 10, 272–290.CrossRefGoogle Scholar
  26. Hanson, J. E., & Crutchfield, J. P. (1992). The attractor-basin portrait of a cellular automaton. Journal of Statistical Physics, 66(5/6), 1415–1462.CrossRefGoogle Scholar
  27. Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press (2nd edn., MIT Press, 1992).Google Scholar
  28. Hordijk, W. (1999). Dynamics, emergent computation, and evolution in cellular automata. PhD thesis, Albuquerque, NM, USA: University of New Mexico.Google Scholar
  29. Hordijk, W. (2013). The EvCA project: A brief history. Complexity (To appear).Google Scholar
  30. Hordijk, W., Crutchfield, J. P., & Mitchell, M. (1996). Embedded particle computation in evolved cellular automata. In T. Toffoli, M. Biafore & J. Leão (Eds.), Proceedings of the Conference on Physics and Computation (pp. 153–158). Cambridge: New England Complex Systems Institute.Google Scholar
  31. Hordijk, W., Crutchfield, J. P., & Mitchell, M. (1998). Mechanisms of emergent computation in cellular automata. In A. E. Eiben, T. Bäck, M. Schoenauer & H. P. Schwefel (Eds.), Parallel Problem Solving from Nature–V (pp. 613–622). New York: Springer.CrossRefGoogle Scholar
  32. Kauffman, S. A. (1996). At home in the universe. Oxford: Oxford University Press.Google Scholar
  33. Lynch, M. (2007). The fraily of adaptive hypotheses for the origins of organismal complexity. Proceedings of the National Academy of Sciences, 104, 8597–8604.CrossRefGoogle Scholar
  34. Manneville, P., Boccara, N., Vichniac, G. Y., & Bidaux, R. (1990). Cellular automata and modeling of complex physical systems, volume 46 of Springer Proceedings in Physics. New York: Springer.Google Scholar
  35. Marcus, J. M. (2005). A partial solution to the C-value paradox. Lecture Notes in Computer Science, p 3678.Google Scholar
  36. Margolus, N., Toffoli, T., & Vichniac, G. (1986). Cellular-automata supercomputers for fluid-dynamics modeling. Physical Review Letters, 56(16), 1694–1696.CrossRefPubMedGoogle Scholar
  37. McShea, D. W. (1992). A metric for the study of evolutionary trends in the complexity of serial structures. Biological Journal of the Linnean Society, 45, 39–55.CrossRefGoogle Scholar
  38. McShea, D. W. (1993). Evolutionary changes in the morphological complexity of the mammalian vertebral column. Evolution, 47, 730–740.CrossRefGoogle Scholar
  39. McShea, D. W. (1994). Mechanisms of large-scale evolutionary trends. Evolution, 48, 1747–1763.CrossRefGoogle Scholar
  40. McShea, D. W. (1996). Metazoan complexity and evolution: Is there a trend? Evolution, 50, 477–492.CrossRefGoogle Scholar
  41. McShea, D. W. (2000). Functional complexity in organisms: Parts as proxies. Biology and Philosophy, 15, 641–668.CrossRefGoogle Scholar
  42. McShea, D. W. (2001). The hierarchical structure of organisms: A scale and documentation of a trend in the maximum. Paleobiology, 27, 405–423.CrossRefGoogle Scholar
  43. McShea, D. W. (2002). A complexity drain on cells in the evolution of multicellularity. Evolution, 56, 441–452.PubMedGoogle Scholar
  44. McShea, D. W., & Brandon, R. N. (2010). Biologys first law. Chicago: University of Chicago Press.Google Scholar
  45. McShea, D. W., & Venit, E. P. (2001). What is a part? In G. P. Wagner (Ed.), The character concept in evolutionary biology (pp. 259–284). New York: Academic Press.CrossRefGoogle Scholar
  46. Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge: MIT Press.Google Scholar
  47. Mitchell, M. (1998). Computation in cellular automata: A selected review. In T. Gramss, S. Bornholdt, M. Gross, M. Mitchell & T. Pellizzari (Eds.), Nonstandard computation. Weinheim: VCH Verlagsgesellschaft.Google Scholar
  48. Mitchell, M., Hraber, P. T., & Crutchfield, J. P. (1993). Revisiting the edge of chaos: Evolving cellular automata to perform computations. Complex Systems, 7, 89–130.Google Scholar
  49. Mitchell, M., Crutchfield, J. P., & Hraber, P. T. (1994a). Dynamics, computation, and the “edge of chaos”: A re-examination. In G. A. Cowan, D. Pines & D. Melzner (Eds.), Complexity: Metaphors, Models, and Reality (pp. 497–513). Reading: Addison-Wesley. Santa Fe Institute Studies in the Sciences of Complexity, Proceedings Volume 19.Google Scholar
  50. Mitchell, M., Crutchfield, J. P., & Hraber, P. T. (1994b). Evolving cellular automata to perform computations: Mechanisms and impediments. Physica D, 75, 361–391.CrossRefGoogle Scholar
  51. Packard, N. H. (1988). Adaptation toward the edge of chaos. In J. A. S. Kelso, A. J. Mandell & M. F. Shlesinger (Eds.), Dynamic patterns in complex systems (pp. 293–301). Singapore: World Scientic.Google Scholar
  52. Sidor, C. A. (2001). Simplification as a trend in synapsid cranial evolution. Evolution, 55, 1142–1419.Google Scholar
  53. Simon, P. M., & Nagel, K. (1998). Simplified cellular automaton model for city traffic. Physical Review E, 58(2), 1286–1295.CrossRefGoogle Scholar
  54. Stoltzfus, A. (1999). On the possibility of constructive neutral evolution. Journal of Molecular Evolution, 49, 169–181.CrossRefPubMedGoogle Scholar
  55. Tamayo, P., & Hartman, H. (1988). Cellular automata, reaction-diffusion systems and the origin of life. In C. G. Langon (Ed.), Artifial life (pp. 105–124). Reading: Addison-Wesley.Google Scholar
  56. Taylor, J. S., & Raes, J. (2004). Duplication and divergence: The evolution of new genes and old ideas. Annual Review of Genetics, 38, 615–643.CrossRefPubMedGoogle Scholar
  57. Valentine, J. W., Collins, A. G., & Meyer, C. P. (1994). Morphological complexity increase in metazoans. Paleobiology, 20, 131–142.Google Scholar
  58. Van Valen, L. (1962). A study of fluctuating asymmetry. Evolution, 16, 125–142.CrossRefGoogle Scholar
  59. von Neumann, J. (1966). Theory of self-reproducing automata. In A. W. Burks (Ed.), Urbana: University of Illinois Press.Google Scholar
  60. Vichniac, G. Y. (1984). Simulating physics with cellular automata. Physica D, 10, 96–116.CrossRefGoogle Scholar
  61. Wagner, P. J. (1996). Testing the underlying patterns of active trends. Evolution, 50, 990–1017.CrossRefGoogle Scholar
  62. Weber, B. H., & Depew, D. J. (2004). Darwinism, design, and complex systems dynamics. In W. A. Dembski & M. Ruse (Eds.), Debating design (pp. 173–190). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  63. Williston, S. W. (1914). Water reptiles of the past and present. Chicago: University of Chicago Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Duke UniversityDurhamUSA
  2. 2.SmartAnalytiX.comLausanneSwitzerland

Personalised recommendations