Advertisement

Evolutionary Biology

, Volume 40, Issue 3, pp 408–419 | Cite as

Intraspecific Sexual Size and Shape Dimorphism in an Australian Freshwater Fish Differs with Respect to a Biogeographic Barrier and Latitude

  • Clint D. Kelly
  • Kaila E. Folinsbee
  • Dean C. Adams
  • Michael D. Jennions
Research Article

Abstract

Geographically structured variation in morphology is a common phenomenon in animals with environmental factors covarying with both latitude and biogeographic barriers having profound impacts on body size and shape. The Pacific blue-eye (Pseudomugil signifer) is a freshwater fish that lives along Australia’s east coast and occurs on either side of a terrestrial barrier, the Burdekin Gap. By quantifying the size and shape of males and females from 10 populations we found that Pacific blue-eyes are not sexually size dimorphism north of the Burdekin Gap whereas the degree of dimorphism was dependent upon latitude south of the barrier. Rensch’s rule was not supported as the degree of male-biased size dimorphism did not increase with increasing population mean body size. Body shape was related to body size and was sexually dimorphic south of the Burdekin Gap but not north of it. Our study represents a rare case of identifying how both body size and shape differ with respect to latitude and a major terrestrial biogeographic barrier and lends further support to the notion that P. signifer may comprise two species, or incipient species, that are separated by the Burdekin Gap.

Keywords

Body shape Body size Sexual selection Rensch’s rule Bergmann’s rule 

Notes

Acknowledgments

We thank Mark McGrouther (Ichthyology, Collection Manager) for access to preserved P. signifer at the Australian Museum and Hugh Spencer (Cape Tribulation Tropical Research Station) for advice and hospitality and two anonymous referees for their valuable input. Fish were collected under a Queensland General Fisheries Permit. This work was supported by an A.N.U. Faculty of Science Research Grant and Iowa State University faculty start-up funds to CDK.

References

  1. Abell, A., Cole, B., Reyes, R., & Wiernasz, D. (1999). Sexual selection on body size and shape in the western harvester ant, Pogonomyrmex occidentalis cresson. Evolution, 53, 535–545.CrossRefGoogle Scholar
  2. Adams, D. C., & Church, J. O. (2008). Amphibians do not follow Bergmann’s rule. Evolution, 62, 413–420.PubMedCrossRefGoogle Scholar
  3. Adams, D. C., & Church, J. O. (2011). The evolution of large-scale body size clines in Plethodon salamanders: Evidence of heat-balance or species-specific artifact? Ecography, 34, 1067–1075.CrossRefGoogle Scholar
  4. Adams, D. C., & Collyer, M. L. (2007). Analysis of character divergence along environmental gradients and other covariates. Evolution, 61, 510–515.PubMedCrossRefGoogle Scholar
  5. Adams, D. C., & Collyer, M. L. (2009). A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution, 63, 1143–1154.PubMedCrossRefGoogle Scholar
  6. Adams, D. C., & Otarola-Castillo, E. (2012). Geomorph: Software for geometric morphometric analyses. R package version 1.1-0. http://cran.r-project.org/web/packages/geomorph/index.html.
  7. Adams, D. C., & Otarola-Castillo, E. (2013). Geomorph: An R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution (in press).Google Scholar
  8. Adams, D. C., & Nistri, A. (2010). Ontogenetic convergence and evolution of foot morphology in European cave salamanders (Family: Plethodontidae). BMC Evol Biol, 10.Google Scholar
  9. Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: Ten years of progress following the “revolution”. Italian Journal of Zoology, 71, 5–16.CrossRefGoogle Scholar
  10. Allen, G., Midgley, S., & Allen, M. (2003). Field guide to the freshwater fishes of Australia. Collingwood, Vic: CSIRO Publishing.Google Scholar
  11. Anderson, M., & ter Braak, C. (2003). Permutation tests for multi-factorial analysis of variance. Journal of Statistical Computation and Simulation, 73, 85–113.CrossRefGoogle Scholar
  12. Angilletta, M., & Dunham, A. (2003). The temperature-size rule in ectotherms: Simple evolutionary explanations may not be general. The American Naturalist, 162, 332–342.PubMedCrossRefGoogle Scholar
  13. Belk, M. C., & Houston, D. D. (2002). Bergmann’s rule in ectotherms: A test using freshwater fishes. The American Naturalist, 160, 803–808.PubMedCrossRefGoogle Scholar
  14. Bergmann, C. (1847). Über die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Göttinger Studien, 3, 595–708.Google Scholar
  15. Berns, C. M., & Adams, D. C. (2010). Bill shape and sexual shape dimorphism between two species of temperate hummingbirds: Black-chinned hummingbird (Archilochus alexandri) and ruby-throated hummingbird (A. colubris). The Auk, 127, 626–635.CrossRefGoogle Scholar
  16. Blanckenhorn, W. (2005). Behavioral causes and consequences of sexual size dimorphism. Ethology, 111, 977–1016.CrossRefGoogle Scholar
  17. Blanckenhorn, W. U., & Demont, M. (2004). Bergmann and converse Bergmann latitudinal clines in arthropods: Two ends of a continuum? Integrative and Comparative Biology, 44, 413–424.PubMedCrossRefGoogle Scholar
  18. Blanckenhorn, W. U., Stillwell, R. C., Young, K. A., Fox, C. W., & Ashton, K. G. (2006). When Rensch meets Bergmann: Does sexual size dimorphism change systematically with latitude? Evolution, 60, 2004–2011.PubMedGoogle Scholar
  19. Bookstein, F. L. (1986). Size and shape spaces for landmark data in two dimensions. Statistical Science, 1, 181–222.CrossRefGoogle Scholar
  20. Bookstein, F. L. (1997). Landmark methods for forms without landmarks: Morphometrics of group differences in outline shape. Medical Image Analysis, 1, 225–243.PubMedCrossRefGoogle Scholar
  21. Bookstein, F., Schäfer, K., Prossinger, H., Seidler, H., Fieder, M., Stringer, C., et al. (1999). Comparing frontal cranial profiles in archaic and modern homo by morphometric analysis. Anatomical Record Part B, New Anatomist, 257, 217–224.CrossRefGoogle Scholar
  22. Brown, M., Cooksley, H., Carthew, S. M., & Cooper, S. J. B. (2006). Conservation units and phylogeographic structure of an arboreal marsupial, the yellow-bellied glider (Petaurus australis). Australian Journal of Zoology, 54, 305–317.CrossRefGoogle Scholar
  23. Burns, J. G., Di Nardo, P., & Rodd, F. H. (2009). The role of predation in variation in body shape in guppies Poecilia reticulata: A comparison of field and common garden phenotypes. Journal of Fish Biology, 75, 1144–1157.PubMedCrossRefGoogle Scholar
  24. Butler, M. A., & Losos, J. (2002). Multivariate sexual dimorphism, sexual selection, and adaptation in Greater Antillean Anolis lizards. Ecological Monographs, 72, 541–559.CrossRefGoogle Scholar
  25. Butler, M. A., Sawyer, S. A., & Losos, J. B. (2007). Sexual dimorphism and adaptive radiation in Anolis lizards. Nature, 447, 202–205.PubMedCrossRefGoogle Scholar
  26. Chapple, D. G., Hoskin, C. J., Chapple, S. N., & Thompson, M. B. (2011). Phylogeographic divergence in the widespread delicate skink (Lampropholis delicata) corresponds to dry habitat barriers in eastern Australia. BMC Evolutionary Biology, 11, 191.PubMedCrossRefGoogle Scholar
  27. Claude, J. (2008). Morphometrics with R. Springer Verlag.Google Scholar
  28. Collyer, M. L., & Adams, D. C. (2007). Analysis of two-state multivariate phenotypic change in ecological studies. Ecology, 88, 683–692.PubMedCrossRefGoogle Scholar
  29. Drake, A. G., & Klingenberg, C. P. (2008). The pace of morphological change: Historical transformation of skull shape in St Bernard dogs. Proceedings of the Royal Society B: Biological Sciences, 275, 71–76.PubMedCrossRefGoogle Scholar
  30. Endler, J. (1995). Multiple-trait coevolution and environmental gradients in guppies. Trends in Ecology & Evolution, 10, 22–29.CrossRefGoogle Scholar
  31. Fairbairn, D. J. (1997). Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females. Annual Review of Ecology and Systematics, 28, 659–687.CrossRefGoogle Scholar
  32. Fairbairn, D. J. (2005). Allometry for sexual size dimorphism: Testing two hypotheses for Rensch’s rule in the water strider Aquarius remigis. The American Naturalist, 166, S69–S84.PubMedCrossRefGoogle Scholar
  33. Fairbairn, D. J., & Preziosi, R. (1994). Sexual selection and the evolution of allometry for sexual size dimorphism in the water strider, Aquarius remigis. The American Naturalist, 144, 101–118.CrossRefGoogle Scholar
  34. Felsenstein, J. (2002). Quantitative characters, phylogenies and morphometrics. In N. MacLeod & P. Forey (Eds.), Morphology, Shape and Phylogeny (pp. 27–44). Bova Raton, FL: CRC Press.CrossRefGoogle Scholar
  35. Fitzpatrick, B. M. (2012). Underappreciated consequences of phenotypic plasticity for ecological speciation. International Journal of Ecology, 2012, 1–12.CrossRefGoogle Scholar
  36. Georga, I., & Koumoundouros, G. (2010). Thermally induced plasticity of body shape in adult zebrafish Danio rerio (Hamilton, 1822). Journal of Morphology, 271, 1319–1327.PubMedCrossRefGoogle Scholar
  37. Hadfield, A., Ivantsoff, V., & Johnson, P. (1979). Clinal variation in electrophoretic and morphological characters between two nominal species of the genus Pseudomugil (Pisces: Atheriniformes: Pseudomugilidae). Marine & Freshwater Research, 30, 375–386.CrossRefGoogle Scholar
  38. Hendry, A., Kelly, M. L., Kinnison, M. T., & Reznick, D. N. (2006). Parallel evolution of the sexes? Effects of predation and habitat features on the size and shape of wild guppies. Journal of Evolutionary Biology, 19, 741–754.PubMedCrossRefGoogle Scholar
  39. Herczeg, G., Gonda, A., & Merilä, J. (2010). Rensch’s rule inverted—female-driven gigantism in nine-spined stickleback Pungitius pungitius. Journal of Animal Ecology, 79, 581–588.PubMedCrossRefGoogle Scholar
  40. Joseph, L., & Moritz, C. (1994). Mitochondrial DNA phylogeography of birds in eastern Australian rainforests: First fragments. Australian Journal of Zoology, 42, 385–403.CrossRefGoogle Scholar
  41. Kaliontzopoulou, A., Adams, D. C., Meijden, A., Perera, A., & Carretero, M. A. (2012). Relationships between head morphology, bite performance and ecology in two species of Podarcis wall lizards. Evolutionary Ecology, 26, 825–845.CrossRefGoogle Scholar
  42. Kelly, C. D., & Adams, D. C. (2010). Sexual selection, ontogenetic acceleration, and hypermorphosis generates male trimorphism in Wellington tree weta. Evolutionary Biology, 37, 200–209.CrossRefGoogle Scholar
  43. Kelly, C. D., Bussiere, L. F., & Gwynne, D. (2008). Sexual selection for male mobility in a giant insect with female-biased size dimorphism. The American Naturalist, 172, 417–423.PubMedCrossRefGoogle Scholar
  44. Langerhans, R., & DeWitt, T. (2004). Shared and unique features of evolutionary diversification. The American Naturalist, 164, 335–349.PubMedCrossRefGoogle Scholar
  45. Langerhans, R., Layman, C., Shokrollahi, A., & DeWitt, T. (2004). Predator-driven phenotypic diversification in Gambusia affinis. Evolution, 58, 2305–2318.PubMedGoogle Scholar
  46. Lengkeek, W., Didderen, K., Cote, I. M., van der Zee, E. M., Snoek, R. C., & Reynolds, J. D. (2008). Plasticity in sexual size dimorphism and Rensch’s rule in Mediterranean blennies (Blenniidae). Canadian Journal of Zoology, 86, 1173–1178.CrossRefGoogle Scholar
  47. McGlashan, D., & Hughes, J. (2002). Extensive genetic divergence among populations of the Australian freshwater fish, Pseudomugil signifer (Pseudomugilidae), at different hierarchical scales. Marine Freshwater Research.Google Scholar
  48. Outomuro, D., & Johansson, F. (2011). The effects of latitude, body size, and sexual selection on wing shape in a damselfly. Biological Journal of the Linnean Society, 102, 263–274.CrossRefGoogle Scholar
  49. Pusey, B., Kennard, M., & Arthington, A. (2004). Freshwater fishes of North-Eastern Australia. Collingwood, Vic: Csiro Publishing.Google Scholar
  50. Rensch, B. (1960). Evolution above the species level. New York: Columbia University Press.Google Scholar
  51. Rohlf, F. J. (2010). tpsRelw: Relative warps analysis.Google Scholar
  52. Rohlf, F. J., & Marcus, L. (1993). A revolution in morphometrics. Trends in Ecology & Evolution, 8, 129–132.CrossRefGoogle Scholar
  53. Rohlf, F. J., & Slice, D. E. (1990). Extensions of the procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39, 40–59.CrossRefGoogle Scholar
  54. Schäuble, C. (2004). Variation in body size and sexual dimorphism across geographical and environmental space in the frogs Limnodynastes tasmaniensis and L. peronii. Biological Journal of the Linnean Society, 82, 39–56.CrossRefGoogle Scholar
  55. Serb, J. M., Alejandrino, A., Otarola-Castillo, E., & Adams, D. C. (2011). Morphological convergence of shell shape in distantly related scallop species (Mollusca: Pectinidae). Zoological Journal of the Linnean Society, 163, 571–584.CrossRefGoogle Scholar
  56. Stone, G. N., Nee, S., & Felsenstein, J. (2011). Controlling for non-independence in comparative analysis of patterns across populations within species. Philosophical Transactions of the Royal Society B: Biological SciencesB, 366, 1410–1424.CrossRefGoogle Scholar
  57. Szekely, T., Freckleton, R., & Reynolds, J. (2004). Sexual selection explains Rensch’s rule of size dimorphism in shorebirds. Proceedings of the National Academy of Sciences of the United States of America, 101, 12224–12227.PubMedCrossRefGoogle Scholar
  58. Teder, T., & Tammaru, T. (2005). Sexual size dimorphism within species increases with body size in insects. Oikos, 108, 321–334.CrossRefGoogle Scholar
  59. Unmack, P. (2001). Biogeography of Australian freshwater fishes. Journal of Biogeography, 28, 1053–1089.CrossRefGoogle Scholar
  60. Verhoeven, K. J. F., Simonsen, K. L., & McIntyre, L. M. (2005). Implementing false discovery rate control: Increasing your power. Oikos, 108, 643–647.CrossRefGoogle Scholar
  61. Wiley, E. (1988). Parsimony analysis and vicariance biogeography. Systematic Zoology, 37, 271–290.CrossRefGoogle Scholar
  62. Wong, B. (2004). Superior fighters make mediocre fathers in the Pacific blue-eye fish. Animal Behaviour, 67, 583–590.CrossRefGoogle Scholar
  63. Wong, B., Keogh, J., & Jennions, M. D. (2004a). Mate recognition in a freshwater fish: Geographical distance, genetic differentiation, and variation in female preference for local over foreign males. Journal of Evolutionary Biology, 17, 701–708.PubMedCrossRefGoogle Scholar
  64. Wong, B., Keogh, J., & McGlashan, D. (2004b). Current and historical patterns of drainage connectivity in eastern Australia inferred from population genetic structuring in a widespread freshwater fish Pseudomugil signifer (Pseudomugilidae). Molecular Ecology, 13, 391–401.PubMedCrossRefGoogle Scholar
  65. Young, K. A. (2005). Life-history variation and allometry for sexual size dimorphism in Pacific salmon and trout. Proceedings of the Royal Society of London. Series B: Biological Sciences, 272, 167–172.PubMedCrossRefGoogle Scholar
  66. Zelditch, M., Swiderski, D., Sheets, H., & FINK, W. (2004). Geometric morphometrics for biologists. London: Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Clint D. Kelly
    • 1
    • 2
  • Kaila E. Folinsbee
    • 3
  • Dean C. Adams
    • 2
  • Michael D. Jennions
    • 1
  1. 1.Research School of BiologyAustralian National UniversityCanberraAustralia
  2. 2.Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesUSA
  3. 3.Department of AnthropologyIowa State UniversityAmesUSA

Personalised recommendations