Evolutionary Biology

, Volume 40, Issue 3, pp 385–394 | Cite as

Colour Polymorphism and Alternative Breeding Strategies: Effects of Parent’s Colour Morph on Fitness Traits in the Common Wall Lizard

  • Paolo Galeotti
  • Roberto Sacchi
  • Daniele Pellitteri-Rosa
  • Adriana Bellati
  • Walter Cocca
  • Augusto Gentilli
  • Stefano Scali
  • Mauro Fasola
Research Article


Colour polymorphism (CP) is widespread in animals, but mechanisms underlying morph evolution and maintenance are not completely resolved. In reptiles, CP is often genetically based and associated with alternative behavioural strategies, mainly in males for most cases. However, female colour morphs also display alternative reproductive strategies associated with behavioural and physiological traits, which may contribute to maintain CP in the population. Both sexes of the common wall lizard (Podarcis muralis) show three pure colour morphs, white, yellow and red. Here, we looked for the effects of male and female colour morphs on fitness traits of captive-breeding pairs. All yellow-throated females laid clutches of many small eggs and produced many light offspring, behaving as r-strategists, whereas white-throated females laid clutches of few large eggs and produced few heavy offspring, behaving as K-strategists. Red-throated females adopted a conditional Kr-strategy depending on their size/age. These basic female strategies were modulated in relation to mate morph: white females had the best fitness gain in terms of viable offspring when mated to red males; mating between yellow morphs yielded a greater breeding success than all other morph crosses, but also lighter offspring; finally, red females produced heavy progeny when paired with red or white males, and light offspring in pair with yellow males. Thus, correlation between CP and traits relevant to fitness combined with non-random mating, either assortative or disassortative, could increase the potential for CP to contribute to divergent evolution in the common wall lizard.


Clutch size Colour polymorphism Breeding strategies Breeding success Egg size Morph combination Kr-strategy Podarcis muralis 



We wish to thank Drs. F. Pupin, M. Melpignano, and M. Teofilo Pignati for their help with field and laboratory work. Many thanks are also due to Prof. M. B. Rasotto for her useful comments on an early draft of the paper. Research was supported by PhD grants (Doctorate in Experimental Ecology and Geobotany) from the University of Pavia to D. P.-R. and A. B. The study was carried out in conformity with the Italian current laws for lizard collection and detention.

Ethical note

The study was carried out with the agreement of the Ministero dell’Ambiente Italiano (Aut. Prot. DPN no. 2009-0016034, validity 2009–2011).


  1. Ahnesjö, J., & Forsman, A. (2003). Correlated evolution of colour pattern and body size in polymorphic pygmy grasshoppers, Tetrix undulata. Journal of Evolutionary Biology, 16, 1308–1318.PubMedCrossRefGoogle Scholar
  2. Andrés, J. A., Sanchez-Guillén, R. A., & Cordero-Rivera, A. (2002). Evolution of female colour polymorphism in damselflies: Testing the hypotheses. Animal Behaviour, 63, 677–685.CrossRefGoogle Scholar
  3. Barbault, R., & Mou, Y. P. (1988). Population dynamics of the common wall lizard, Podarcis muralis, in southwestern France. Herpetologica, 44, 38–47.Google Scholar
  4. Bauwens, D., & Verheyen, R. F. (1985). The timing of reproduction in the lizard Lacerta vivipara: Differences between individual females. Journal of Herpetology, 19, 353–364.CrossRefGoogle Scholar
  5. Bellati, A. (2012). Intra-and inter-population analysis of colour polymorphism in Podarcis muralis (Sauria: Lacertidae) using mitochondrial and nuclear markers. PhD thesis, University of Pavia.Google Scholar
  6. Blomberg, S., & Shine, R. (1996). Reptiles. In W. J. Sutherland (Ed.), Ecological census techniques: A handbook (pp. 218–226). Cambridge: Cambridge University Press.Google Scholar
  7. Bolnick, D. I. (2012). Sympatric speciation in threespine stickleback: Why not? International Journal of Ecology, 2011 (Article ID 942847), 15. doi: 10.1155/2011/942847.
  8. Bolnick, D. I., & Kirkpatrick, M. (2012). The relationship between intraspecific assortative mating and reproductive isolation between divergent populations. Current Zoology, 58, 484–492.Google Scholar
  9. Calsbeek, B., Hasselquist, D., & Clobert, J. (2010). Multivariate phenotypes and the potential for alternative phenotypic optima in wall lizard (Podarcis muralis) ventral colour morphs. Journal of Evolutionary Biology, 23, 1138–1147.PubMedCrossRefGoogle Scholar
  10. Carpenter, G. C. (1995). Modeling dominance: The influence of size, coloration, and experience on dominance relations in tree lizards (Urosaurus ornatus). Herpetological Monographs, 9, 88–101.CrossRefGoogle Scholar
  11. Cheylan, M. (1988). Variabilité phénotypique du Lézard des murailles Podarcis muralis sur les îles de la côte provençale, France. Revue d’Ecologie-Terre et Vie, 43, 287–321.Google Scholar
  12. Cooper, W. E., & Burns, N., Jr. (1987). Social significance of ventrolateral coloration in the fence lizard, Sceloporus undulatus. Animal Behaviour, 35, 526–532.CrossRefGoogle Scholar
  13. Corl, A., Davis, A. R., Kuchta, S. R., & Sinervo, B. (2010). Selective loss of polymorphic mating types is associated with rapid phenotypic evolution during morphic speciation. Proceedings of the National Academy of Sciences United States of America, 107, 4254–4259.CrossRefGoogle Scholar
  14. Ford, E. B. (1945). Polymorphism. Biological Reviews and Biological Proceedings of the Cambridge Philosophical Society, 20, 73–88.CrossRefGoogle Scholar
  15. Forsman, A., & Shine, R. (1995). The adaptive significance of colour pattern polymorphism in the Australian scincid lizard Lampropholis delicata. Biological Journal of Linnean Society, 55, 273–291.CrossRefGoogle Scholar
  16. Galeotti, P., Pellitteri-Rosa, D., Sacchi, R., Gentilli, A., Pupin, F., Rubolini, D., et al. (2010). Sex, morph- and size-specific susceptibility to stress measured by haematological variables in captive common wall lizard Podarcis muralis. Comparative Biochemistry and Physiology A, 157, 354–363.CrossRefGoogle Scholar
  17. Galeotti, P., & Rubolini, D. (2004). The niche variation hypothesis and the evolution of colour polymorphism in birds: A comparative study of owls, nightjars and raptors. Biological Journal of Linnean Society, 82, 237–248.CrossRefGoogle Scholar
  18. Galeotti, P., Rubolini, D., Dunn, P. O., & Fasola, M. (2003). Colour polymorphism in birds: Causes and functions. Journal of Evolutionary Biology, 16, 635–646.PubMedCrossRefGoogle Scholar
  19. Galeotti, P., & Sacchi, R. (2003). Differential parasitaemia in the tawny owl (Strix aluco): Effect of colour morph and habitat. Journal of Zoology, 261, 91–99.CrossRefGoogle Scholar
  20. Gray, S. M., & McKinnon, J. S. (2007). Linking color polymorphism maintenance and speciation. Trends in Ecology & Evolution, 22, 71–79.CrossRefGoogle Scholar
  21. Gross, M. R. (1985). Disruptive selection for alternative life history in salmon. Nature, 313, 47–48.CrossRefGoogle Scholar
  22. Gross, M. R. (1991). Evolution of alternative reproductive strategies: Frequency-dependent sexual selection in male bluegill sunfish. Philosophical Transaction of the Royal Society B, 1262, 59–66.CrossRefGoogle Scholar
  23. Hoffman, E. A., & Blouin, M. S. (2000). A review of colour and pattern polymorphisms in anurans. Biological Journal of the Linnean Society, 70, 633–665.CrossRefGoogle Scholar
  24. Hutchings, J. A., & Myers, R. A. (1994). The evolution of alternative mating strategies in variable environments. Evolutionary Ecology, 8, 256–268.CrossRefGoogle Scholar
  25. Huxley, J. S. (1955). Morphism in birds. Acta 6th international ornithological congress (pp. 309–328). XI Basel 1954.Google Scholar
  26. Huyghe, K., Small, M., Vanhooydonck, V., Herrel, A., Tadic, Z., Van Damme, R., et al. (2010). Genetic divergence among sympatric colour morphs of the Dalmatian wall lizard (Podarcis melisellensis). Genetica, 138, 387–393.PubMedCrossRefGoogle Scholar
  27. Ji, X. A., & Braña, F. (2000). Among clutch variation in reproductive output and egg size in the wall lizard (Podarcis muralis) from a lowland population of northern Spain. Journal of Herpetology, 34, 54–60.CrossRefGoogle Scholar
  28. Lank, D. B. (2002). Diverse processes maintain plumage polymorphisms in birds. Journal of Avian Biology, 4, 327–330.CrossRefGoogle Scholar
  29. Lepetz, V., Massot, M., Chaine, A. S., & Clobert, J. (2009). Climate warming and the evolution of morphotypes in a reptile. Global Change Biology, 15, 454–466.CrossRefGoogle Scholar
  30. Lopez, P., Martin, J., & Cuadrado, M. (2004). The role of lateral blue spots in intrasexual relationships between male Iberian rock-lizards, Lacerta monticola. Ethology, 110, 543–561.CrossRefGoogle Scholar
  31. Majerus, M. N. (1998). Melanism: Evolution in action. Oxford: Oxford University Press.Google Scholar
  32. Majerus, M. N., & Mundy, N. I. (2003). Mammalian melanism: Natural selection in black and white. Trends in Genetics, 19, 585–588.PubMedCrossRefGoogle Scholar
  33. Martin, J., & Forsman, A. (1999). Social costs and development on nuptial coloration in male Psammodromus algirus lizards: An experiment. Behavioral Ecology, 10, 396–400.CrossRefGoogle Scholar
  34. Mundy, N. Y. (2006). Genetic basis of color variation in wild birds. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration, mechanisms and measurements (pp. 469–506). Cambridge, USA: Harvard University Press.Google Scholar
  35. Nadeau, N. J., Burke, T., & Mundy, N. I. (2007). Evolution of an avian pigmentation: Gene correlates with a measure of sexual selection. Proceedings of the Royal Society of London Series B-Biological Sciences, 274, 1807–1813.CrossRefGoogle Scholar
  36. Pianka, E. R. (1970). On r- and K-selection. American Naturalist, 104, 592–597.CrossRefGoogle Scholar
  37. R Development Core Team. (2011). R: A language and environment for statistical computing. Vienna, Austria: The R Foundation for Statistical Computing. ISBN: 3-900051-07-0. Available online at
  38. Rand, M. S. (1988). Courtship and aggressive behavior in male lizards exhibiting two different sexual colorations. American Zoologist, 28, 153A.Google Scholar
  39. Rand, M. S. (1992). Hormonal control of polymorphic and sexually dimorphic coloration in the lizard Sceloporus undulatus erythrocheilus. General and Comparative Endocrinology, 88, 461–468.PubMedCrossRefGoogle Scholar
  40. Roulin, A. (2004). The evolution, maintenance and adaptive function of genetic colour polymorphism in birds. Biological Review, 79, 1–34.CrossRefGoogle Scholar
  41. Roulin, A., & Dijkstra, C. (2003). Genetic and environmental components of variation in eumelanin and phaeomelanin sex-traits in the barn owl. Heredity, 90, 359–364.PubMedCrossRefGoogle Scholar
  42. Roulin, A., Richner, H., & Ducrest, A. L. (1998). Genetic, environmental, and condition-dependent effects on female and male ornamentation in the barn owl Tyto alba. Evolution, 52, 1451–1460.CrossRefGoogle Scholar
  43. Sacchi, R., Pellitteri-Rosa, D., Capelli, A., Ghitti, M., Di Paoli, A., Bellati, A., et al. (2012). Studying the reproductive biology of the common wall lizard using ultrasonography. Journal of Zoology, 287, 301–310.CrossRefGoogle Scholar
  44. Sacchi, R., Pupin, F., Gentilli, A., Rubolini, D., Scali, S., Fasola, M., et al. (2009). Male-male combats in a polymorphic lizard: Residency and size, but not color, affect fighting rules and contest outcome. Aggressive Behaviour, 35, 274–283.CrossRefGoogle Scholar
  45. Sacchi, R., Rubolini, D., Gentilli, A., Pupin, F., Razzetti, E., Scali, F., et al. (2007a). Morph-specific immunity in males of the common wall lizard, Podarcis muralis. Amphibia-Reptilia, 28, 408–412.CrossRefGoogle Scholar
  46. Sacchi, R., Scali, S., Pupin, F., Gentilli, A., Galeotti, P., & Fasola, M. (2007b). Microgeographic variation of colour morph frequency and biometry of common wall lizards. Journal of Zoology, 273, 389–396.CrossRefGoogle Scholar
  47. Sacchi, R., Scali, S., Pellitteri-Rosa, D., Pupin, F., Gentilli, A., Tettamanti, S., et al. (2010). Photographic identification in reptiles: A matter of scales. Amphibia Reptilia, 31, 489–502.CrossRefGoogle Scholar
  48. Shine, R., Ambariyanto, Harlow, P. S., & Mumpuni. (1998). Ecological divergence among sympatric colour morphs in blood pythons, Python brongersmai. Oecologia, 116, 113–119.CrossRefGoogle Scholar
  49. Sinervo, B. (2000). Adaptation, natural selection, and optimal life history allocation in the face of genetically-based trade-offs. In T. Mousseau, B. Sinervo, & J. A. Endler (Eds.), Adaptive genetic variation in the wild (pp. 41–64). Oxford: Oxford University Press.Google Scholar
  50. Sinervo, B. (2001). Runaway social games, genetic cycles driven by alternative male and female strategies, and the origin of morphs. Genetica, 112–113, 417–434.PubMedCrossRefGoogle Scholar
  51. Sinervo, B., Bleay, C., & Adamopoulou, C. (2001). Social causes of correlational selection and the resolution of a heritable throat color polymorphism in a lizard. Evolution, 55, 2040–2052.PubMedGoogle Scholar
  52. Sinervo, B., Calsbeek, R., Comendant, T., Both, C., Adamopoulou, C., & Clobert, J. (2006). Genetic and maternal determinants on effective dispersal: The effect of sire genotype and size at birth in side-blotched lizards. American Natutalist, 168, 88–99.CrossRefGoogle Scholar
  53. Sinervo, B., Heulin, B., Surget-Groba, Y., Clobert, J., Miles, D. B., Corl, A., et al. (2007). Models of density-dependent genic selection and a new rock-paper-scissors social system. American Naturalist, 170, 663–680.PubMedCrossRefGoogle Scholar
  54. Sinervo, B., & Lively, C. M. (1996). The rock–paper–scissors game and the evolution of alternative mating strategies. Nature, 380, 240–243.CrossRefGoogle Scholar
  55. Sinervo, B., & Svensson, E. (2002). Correlational selection and the evolution of genomic architecture. Heredity, 89, 329–338.PubMedCrossRefGoogle Scholar
  56. Sinervo, B., Svensson, E., & Comendant, T. (2000). Density cycles and an offspring quantity and quality game driven by natural selection. Nature, 406, 985–988.PubMedCrossRefGoogle Scholar
  57. Sinervo, B., & Zamudio, K. R. (2001). The evolution of alternative reproductive strategies: Fitness differential, heritability, and genetic correlation between sexes. Journal of Heredity, 92, 198–205.PubMedCrossRefGoogle Scholar
  58. Stamps, J. A., & Krishnan, V. V. (1998). Territory acquisition in lizards: I First encounters. Animal Behaviour, 47, 1375–1385.CrossRefGoogle Scholar
  59. Stuart-Fox, D. M., Firth, D., & Whiting, M. J. (2006). Multiple signals in chameleon contests: Designing and analysing animal contests as a tournament. Animal Behaviour, 71, 1263–1271.CrossRefGoogle Scholar
  60. Thompson, C. W., & Moore, M. C. (1991). Synthopic occurrence of multiple dewlap color morphs in male Tree Lizards, Urosaurus ornatus. Copeia, 1991, 493–503.CrossRefGoogle Scholar
  61. Thompson, C. W., Moore, I. T., & Moore, M. C. (1993). Social, environmental and genetic factors in the ontogeny of phenotypic differentiation in a lizard with alternative male reproductive strategies. Behavioral Ecology and Sociobiology, 33, 137–146.CrossRefGoogle Scholar
  62. Tuttle, E. M. (2003). Alternative reproductive strategies in the white-throated sparrow: Behavioral and genetic evidence. Behavioral Ecology, 14, 425–432.CrossRefGoogle Scholar
  63. Van Damme, R., Bauwens, D., Braña, F., & Verheyen, R. F. (1992). Incubation temperature differentially affects hatching time, egg survival, and hatchling performance. Herpetologica, 48, 220–228.Google Scholar
  64. Van Valen, L., & Grant, P. R. (1970). Variation and niche width reexamined. American Naturalist, 104, 589–590.CrossRefGoogle Scholar
  65. Vercken, E., Massot, M., Sinervo, B., & Clobert, J. (2007). Colour variation and alternative reproductive strategies in females of the common lizard Lacerta vivipara. Journal of Evolutionary Biology, 20, 221–232.PubMedCrossRefGoogle Scholar
  66. Weiss, S. L. (2002). Reproductive signals of female lizards: Pattern of trait expression and male response. Ethology, 108, 793–813.CrossRefGoogle Scholar
  67. Widemo, F. (1998). Alternative reproductive strategies in the ruff, Philomachus pugnax: A mixed ESS? Animal Behaviour, 56, 329–336.PubMedCrossRefGoogle Scholar
  68. Zamudio, K. R., & Sinervo, B. (2003). Ecological and social contexts for the evolution of alternative mating strategies. In S. F. Fox, J. K. McCoy, & T. A. Baird (Eds.), Lizard social behavior (pp. 83–106). Baltimore and London: John Hopkins University Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Paolo Galeotti
    • 1
  • Roberto Sacchi
    • 1
  • Daniele Pellitteri-Rosa
    • 1
  • Adriana Bellati
    • 1
  • Walter Cocca
    • 1
  • Augusto Gentilli
    • 1
  • Stefano Scali
    • 2
  • Mauro Fasola
    • 1
  1. 1.Dipartimento di Scienze della Terra e dell’Ambiente, Laboratorio di Eco-EtologiaUniversità degli Studi di PaviaPaviaItaly
  2. 2.Museo Civico di Storia NaturaleMilanItaly

Personalised recommendations