Evolutionary Biology

, Volume 39, Issue 4, pp 600–612 | Cite as

On the Possible Shapes of the Brain

Research Article

Abstract

The human brain is unique among primates in its complexity and variability. Here I argue that this variability is, however, strongly constrained by developmental processes common to all mammals. Comparative analyses of grey and white matter volume, cortical surface area and cortical folding show that the rostro–caudal axis of the central nervous system is a main direction along which mammalian neuroanatomical diversity is organised. Phylogenetically, rostral structures are often disproportionately larger and more differentiated in large mammals compared with small ones. Ontogenetically, caudal structures differentiate earlier but show less variation among species than rostral structures, which differentiate later and for a longer period. Theoretical considerations suggest that growth oriented along the rostro–caudal axis should produce non-linear differences in white matter volume and cortical folding. Growth appears then as a fundamental parameter to understand mammalian neuroanatomical variability, whose effects should be common to all species. This seems to be indeed the case for humans: the volume of different brain structures as well as changes in the extension and folding of the cerebral cortex resemble the trends observed across mammals. A strong global pattern of coordinated variability emerges, where differences in total brain volume are non-linearly related to local neuroanatomical changes. Finally, I review evidence suggesting that the changes related to this global pattern of variability may have an influence on the organisation of behaviour, modulating the development of certain cognitive traits or even affecting the susceptibility to psychiatric disorders.

Keywords

Brain development Brain evolution Cortical folding Mathematical modelling Neuroanatomy 

References

  1. Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31(3), 137–145.CrossRefPubMedGoogle Scholar
  2. Badre, D., & D’Esposito, M. (2009). Is the rostro–caudal axis of the frontal lobe hierarchical? Nature Reviews Neuroscience, 10, 659–669.CrossRefPubMedGoogle Scholar
  3. Barron, D. (1950). An experimental analysis of some factors involved in the development of the fissure pattern of the cerebral cortex. Journal of Experimental Zoology, 113, 553–581.CrossRefGoogle Scholar
  4. Barton, R. A., & Harvey, P. H. (2000). Mosaic evolution of brain structure in mammals. Nature, 405, 1055–1058.CrossRefPubMedGoogle Scholar
  5. Bourgeois, J. P. (1997). Synaptogenesis, heterochrony and epigenesis in the mammalian cortex. Acta Paediatrica. Supplement, 422, 27–33.CrossRefGoogle Scholar
  6. Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Johann Ambrosius Barth.Google Scholar
  7. Bueller, J. A., Aftab, M., Sen, S., Gomez-Hassan, D., Burmeister, M., & Zubieta, J. K. (2006). BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biological Psychiatry, 59, 812–815.CrossRefPubMedGoogle Scholar
  8. Carper, R. A., Mosesc, P., Tiguea, Z. D., & Courchesne, E. (2002). Cerebral lobes in autism: Early hyperplasia and abnormal age effects. Neuroimage, 16(4), 1038–1051.CrossRefPubMedGoogle Scholar
  9. Chenn, A., & Walsh, C. A. (2002). Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science, 297, 365–369.CrossRefPubMedGoogle Scholar
  10. Clouchoux, C., Coulon, O., Cachia, A., Rivière, D., Mangin, J. F., & Régis, J. M. (2004). Towards an anatomically meaningful parameterization of the cortical surface. In C. Barillot, D. Haynor, & P. Hellier (Eds.), Proceedings of MICCAI’04, LNCS, Saint-Malo, France, Sep 2004. Springer, Berlin.Google Scholar
  11. Courchesne, E., & Pierce, K. (2005). Why the frontal cortex in autism might be talking only to itself: Local over-connectivity but long-distance disconnection. Current Opinion in Neurobiology, 15(2), 225–230.CrossRefPubMedGoogle Scholar
  12. Egan, M., Kojima, M., Callicott, J., Goldberg, T., Kolachana, B., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112(2), 257–269.CrossRefPubMedGoogle Scholar
  13. Feuillet, L., Dufour, H., & Pelletier, J. (2007). Brain of a white-collar worker. Lancet, 370(9583), 262.CrossRefPubMedGoogle Scholar
  14. Finlay, B. L., Darlington, R. B., & Nicastro, N. (2001). Developmental structure in brain evolution. Behavioral and Brain Sciences, 24, 263–278.CrossRefPubMedGoogle Scholar
  15. Fischl, B., Rajendran, N., Busa, E., Augustinack, J., Hinds, O., Yeo, B. T., et al. (2008). Cortical folding patterns and predicting cytoarchitecture. Cerebral Cortex, 18(8), 1973–1980.CrossRefPubMedGoogle Scholar
  16. Fornito, A., Yücel, M., Wood, S., Stuart, G. W., Buchanan, J. A., Proffitt, T., et al. (2004). Individual differences in anterior cingulate/paracingulate morphology are related to executive functions in healthy males. Cerebral Cortex, 14(4), 424–431.CrossRefPubMedGoogle Scholar
  17. Frodl, T., Schüle, C., Schmitt, G., Born, C., Baghai, T., Zill, P., et al. (2007). Association of the brain-derived neurotrophic factor Val66Met polymorphism with reduced hippocampal volume in major depression. Archives of General Psychiatry, 64, 410–416.CrossRefPubMedGoogle Scholar
  18. Geng, G., Johnston, L. A., Yan, E., Britto, J. M., Smith, D. W., Walker, D. W., et al. (2009). Biomechanisms for modelling cerebral cortical folding. Medical Image Analysis, 13(6), 920–930.CrossRefPubMedGoogle Scholar
  19. Goldman-Rakic, P. S. (1996). The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. Philosophical Transactions of the Royal Society of London. Series B, 351, 1445–1453.CrossRefPubMedGoogle Scholar
  20. Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B: Biological Sciences, 21, 581–598.CrossRefGoogle Scholar
  21. Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., Egan, M. F., et al. (2003). Brain-derived neurotrophic factor Val66Met polymorphism affects human memory-related hippocampal activity and predicts memory performance. Journal of Neuroscience, 23, 6690–6694.PubMedGoogle Scholar
  22. Haydar, T. F., Kuan, C. Y., Flavell, R. A., & Rakic, P. (1999). The role of cell death in regulating the size and shape of the mammalian forebrain. Cerebral Cortex, 9, 621–626.CrossRefPubMedGoogle Scholar
  23. Herbert, M. R., Ziegler, D. A., Makris, N., Filipek, P. A., Kemper, T. L., Normandin, J. J., et al. (2004). Localization of white matter volume increase in autism and developmental language disorder. Annals of Neurology, 55(4), 530–540.CrossRefPubMedGoogle Scholar
  24. Hilgetag, C. C., & Barbas, H. (2006). Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Computational Biology, 2(3), e22.CrossRefPubMedGoogle Scholar
  25. Huffman, K. J., Molnár, Z., Van Dellen, A., Kahn, D. M., Blakemore, C., & Krubitzer, L. (1999). Formation of cortical fields in a reduced cortical sheet. Journal of Neuroscience, 19(22), 9939–9952.PubMedGoogle Scholar
  26. Jerison, H. J. (1973). Evolution of the brain and intelligence. New York: Academic Press.Google Scholar
  27. Jolicoeur, P. (1963). The multivariate generalization of the allometry equation. Biometrics, 19, 497–499.CrossRefGoogle Scholar
  28. Kaessmann, H., Wiebe, V., Weiss, G., & Pääbo, S. (2001). Great ape DNA sequences reveal a reduced diversity and an expansion in humans. Nature Genetics, 27, 155–156.CrossRefPubMedGoogle Scholar
  29. Kingsbury, M., Rehen, S., Contos, J., Higgins, C., & Chun, J. (2003). Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nature Neuroscience, 6, 1292–1299.CrossRefPubMedGoogle Scholar
  30. Krubitzer, L. (2007). The magnificent compromise: Cortical field evolution in mammals. Neuron, 56(2), 201–208.CrossRefPubMedGoogle Scholar
  31. Lainhart, J. E., Bigler, E. D., Bocian, M., Coon, H., Dinh, E., Dawson, G., et al. (2006). Head circumference and height in autism: A study by the collaborative program of excellence in autism. American Journal of Medical Genetics Part A, 140(21), 2257–2274.CrossRefPubMedGoogle Scholar
  32. Le Gros Clark, W. E. (1945). Deformation patterns in the cerebral cortex. In W. E. Le Gros Clark & P. B. Medawar (Eds.) Essays on growth and form presented to D'Arcy Wentworth Thompson, 1st ed. (pp. 1–22). London & New York: Oxford University Press.Google Scholar
  33. Lefèvre, J., & Mangin, J. F. (2010). A reaction-diffusion model of human brain development. PLoS Computational Biology, 6(4), e1000749.CrossRefPubMedGoogle Scholar
  34. Muckli, L., Naumer, M. J., & Singer, W. (2009). Bilateral visual field maps in a patient with only one hemisphere. Proceedings of the National Academy of Sciences, 106(31), 13034–13039.CrossRefGoogle Scholar
  35. Müller, G. B. (2007). Evo-devo: Extending the evolutionary synthesis. Nature Reviews Genetics, 8, 943–949.CrossRefPubMedGoogle Scholar
  36. Neves-Pereira, M., Mundo, E., Muglia, P., King, N., Macciardi, F., & Kennedy, J. (2002). The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: Evidence from a family-based association study. American Journal of Human Genetics, 71(3), 651–655.CrossRefPubMedGoogle Scholar
  37. Nie, J., Guo, L., Li, G., Faraco, C., Miller, L. S., & Liu, T. (2010). A computational model of cerebral cortex folding. Journal of Theoretical Biology, 264(2), 467–478.CrossRefPubMedGoogle Scholar
  38. O’Leary, D., & Sahara, S. (2008). Genetic regulation of a realization of the neocortex. Current Opinion in Neurobiology, 18, 90–100.CrossRefPubMedGoogle Scholar
  39. Ono, M., Kubic, S., & Abernathy, C. (1990). Atlas of the Cerebral Sulci. New York: Thieme.Google Scholar
  40. Passingham, R. E. (1973). Anatomical differences between the neocortex of man and other primates. Brain, Behavior and Evolution, 7, 337–359.CrossRefPubMedGoogle Scholar
  41. Pausova, Z., Paus, T., Abrahamowicz, M., Almerigi, J., Arbour, N., Bernard, M., et al. (2007). Genes, maternal smoking, and the offspring brain and body during adolescence: Design of the Saguenay youth study. Human Brain Mapping, 28, 502–518.CrossRefPubMedGoogle Scholar
  42. Petrides, M. (2005). Lateral prefrontal cortex: Architectonic and functional organization. Philosophical Transactions of the Royal Society. Series B, 360, 781–795.CrossRefGoogle Scholar
  43. Pezawas, L., Verchinsky, B. A., Mattay, V. S., Callicott, J. H., Kolachana, B. S., Straub, R. E., et al. (2004). The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. Journal of Neuroscience, 24, 10099–10102.CrossRefPubMedGoogle Scholar
  44. Prothero, J. W., & Sundsten, J. W. (1984). Folding of the cerebral cortex in mammals. A scaling model. Brain, Behavior and Evolution, 24, 152–167.CrossRefPubMedGoogle Scholar
  45. Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241, 170–176.CrossRefPubMedGoogle Scholar
  46. Rakic, P. (2009). Evolution of the neocortex: A perspective from developmental biology. Nature Reviews Neuroscience, 10, 724–735.CrossRefPubMedGoogle Scholar
  47. Régis, J. M., Mangin, J. F., Ochiai, T., Frouin, V., Rivière, D., Cachia, A., et al. (2005). “Sulcal root” generic model: A hypothesis to overcome the variability of the human cortex folding patterns. Neurologia medico-chirurgica(Tokyo)., 45, 1–17.CrossRefGoogle Scholar
  48. Richman, D. P., Stewart, R. M., Hutchinson, J. W., & Caviness, V. S. (1975). Mechanical model of brain convolutional development. Science, 189, 18–21.CrossRefGoogle Scholar
  49. Rilling, J. K., & Insel, T. R. (1999). The primate neocortex in comparative perspective using magnetic resonance imaging. Journal of Human Evolution, 37, 191–223.CrossRefPubMedGoogle Scholar
  50. Sen, S., Nesse, R. M., Stoltenberg, S. F., Li, S., Gleiberman, L., Chakravarti, A., et al. (2003). A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology, 28(2), 397–401.CrossRefPubMedGoogle Scholar
  51. Sklar, P., Gabriel, S. B., McInnis, M. G., Bennett, P., Lim, Y. M., Tsan, G., et al. (2002). Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Brain-derived neutrophic factor. Molecular Psychiatry, 7(6), 579–593.CrossRefPubMedGoogle Scholar
  52. Smart, I., & McSherry, G. (1986). Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes. Journal of Anatomy, 146, 141–152.PubMedGoogle Scholar
  53. Striegel, D. A., & Hurdal, M. K. (2009). Chemically based mathematical model for development of cerebral cortical folding patterns. PLoS Computational Biology, 5(9), e1000524.CrossRefPubMedGoogle Scholar
  54. Thompson, D. W. (1917). On growth and form. Cambridge: Cambridge University Press.Google Scholar
  55. Todd, P. (1982). A geometric model for the cortical folding pattern of simple folded brains. Journal of Theoretical Biology, 97, 529–538.CrossRefPubMedGoogle Scholar
  56. Toro, R., & Burnod, Y. (2003). Geometric atlas: Modeling the cortex as an organized surface. NeuroImage, 20(3), 1468–1484.CrossRefPubMedGoogle Scholar
  57. Toro, R., & Burnod, Y. (2005). A morphogenetic model for the development of cortical convolutions. Cerebral Cortex, 15, 1900–1913.CrossRefPubMedGoogle Scholar
  58. Toro, R., Chupin, M., Garnero, L., Leonard, G., Perron, M., Pike, B., et al. (2009). Brain volumes and val66met polymorphism of the BDNF gene: Local or global effects? Brain Structure and Function, 213(6), 501–509.CrossRefPubMedGoogle Scholar
  59. Toro, R., Perron, M., Pike, B., Richer, L., Veillette, S., Pausova, Z., et al. (2008). Brain size and folding of the human cerebral cortex. Cerebral Cortex, 18(10), 2352–2357.CrossRefPubMedGoogle Scholar
  60. Van Essen, D. C. (1997). A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature, 385, 313–318.CrossRefPubMedGoogle Scholar
  61. Vogt, B. A., Nimchinsky, E. A., Vogt, L. J., & Hof, P. (1995). Human cingulate cortex: Surface features, flat maps, and cytoarchitecture. The Journal of Comparative Neurology, 359, 490–506.CrossRefPubMedGoogle Scholar
  62. Von Melchner, L., Pallas, S. L., & Sur, M. (2000). Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature, 404(6780), 871–876.CrossRefGoogle Scholar
  63. Welker, W. (1990). Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci. In E. G. Jones & A. Peters (Eds.), Cerebral cortex (Vol. 8b). New York: Plenum Press.CrossRefGoogle Scholar
  64. Welker, W., & Campos, G. (1963). Physiological significance of sulci in somatic sensory cerebral cortex in mammals of the family procyonidae. The Journal of Comparative Neurology, 120, 19–36.CrossRefPubMedGoogle Scholar
  65. Wood, J. N., & Grafman, J. (2003). Human prefrontal cortex: Processing and representational perspectives. Nature Reviews Neuroscience, 4, 139–147.CrossRefPubMedGoogle Scholar
  66. Zhang, K., & Sejnowski, T. J. (2000). A universal scaling law between gray matter and white matter of cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 97(10), 5621–5626.CrossRefPubMedGoogle Scholar
  67. Zilles, K., Armstrong, E., Moser, K. H., Schleicher, A., & Stephan, H. (1989). Gyrification in the cerebral cortex of primates. Brain, Behavior and Evolution, 34, 143–150.CrossRefPubMedGoogle Scholar
  68. Zilles, K., Armstrong, E., Schleicher, A., & Kretschmann, H. J. (1988). The human pattern of gyrification in the cerebral cortex. Anatomy and Embryology (Berlin), 179, 173–179.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Human Genetics and Cognitive FunctionsInstitut PasteurParisFrance
  2. 2.CNRS URA 2182 “Genes, synapses and cognition”Institut PasteurParisFrance
  3. 3.Human Genetics and Cognitive FunctionsUniversité Paris DiderotSorbonne Paris Cité, ParisFrance

Personalised recommendations