Evolutionary Biology

, Volume 40, Issue 1, pp 92–100 | Cite as

Female Reproductive Effort and Sexual Selection on Males of Waterfowl

Research Article

Abstract

To test the hypothesis that female reproductive effort influences sexual selection on males, the degree of sexual dichromatism in waterfowl (Aves: Anseriformes) was correlated with female reproductive effort, measured as average clutch mass expressed as a percentage of adult female body mass. Sexual dichromatism was found to be significantly positively associated with female reproductive effort in 21 phylogenetically independent matched-pair comparisons in the subfamily Anatinae, and this result could not be explained by body mass differences alone. The results are consistent with the hypothesis that increased female reproductive effort increases competition among males for access to females and thus the strength of sexual selection.

Keywords

Anatidae Reproductive effort Sexual dichromatism Selection 

Supplementary material

11692_2012_9188_MOESM1_ESM.xls (17 kb)
Supplementary material 1 (XLS 16 kb)

References

  1. Ackerley, D. D. (2000). Taxon sampling, correlated evolution, and independent contrasts. Evolution, 54, 1480–1492.Google Scholar
  2. Afton, A. D., & Paulus, S. L. (1992). Incubation and brood care. In B. D. Batt, A. D. Afton, M. G. Anderson, C. D. Ankney, D. H. Johnson, J. A. Kadlec, & G. L. Krapu (Eds.), Ecology and management of breeding waterfowl (pp. 62–108). Minneapolis: University of Minnesota Press.Google Scholar
  3. Andersson, M. (1994). Sexual selection. Princeton, NJ: Princeton University Press.Google Scholar
  4. Ashmole, N. P. (1963). The regulation of numbers of tropical oceanic birds. Ibis, 103, 458–473.Google Scholar
  5. Badyaev, A. V. (1997). Covariation between life history and sexually selected traits: An example with cardueline finches. Oikos, 80, 128–138.CrossRefGoogle Scholar
  6. Badyaev, A. V., & Hill, G. E. (2000). Evolution of sexual dichromatism: Contribution of carotenoid- versus melanin-based coloration. Biological Journal of the Linnean Society, 69, 153–172.CrossRefGoogle Scholar
  7. Badyaev, A. V., Hill, G. E., & Weckworth, B. V. (2002). Species divergence in sexually selected traits: Increase in song elaboration is related to decrease in plumage ornamentation in finches. Evolution, 56, 412–419.PubMedGoogle Scholar
  8. Badyaev, A. V., & Qvarnström, A. (2002). Putting sexual traits into the context of an organism: A life-history perspective in studies of sexual selection. Auk, 119, 301–310.Google Scholar
  9. Bailey, S. F. (1978). Latitudinal gradients in colors and patterns of passerine birds. Condor, 80, 372–381.CrossRefGoogle Scholar
  10. Bateman, A. J. (1948). Intrasexual selection in Drosophila. Heredity, 2, 349–368.PubMedCrossRefGoogle Scholar
  11. Björklund, M. (1990). A phylogenetic interpretation of sexual dimorphism in body size and ornament in relation to mating system in birds. Journal of Evolutionary Biology, 3, 171–183.CrossRefGoogle Scholar
  12. Borgia, G. (1979). Sexual selection and the evolution of mating systems. In M. S. Blum & N. A. Blum (Eds.), Sexual selection and reproductive systems in insects (pp. 19–80). New York: Academic Press.Google Scholar
  13. Charnov, E. L., & Schaffer, W. M. (1973). Life-history consequences of natural selection: Cole’s result revisited. The American Naturalist, 107, 791–793.CrossRefGoogle Scholar
  14. Clutton-Brock, T. H. (2007). Sexual selection in males and females. Science, 318, 1882–1885.PubMedCrossRefGoogle Scholar
  15. Clutton-Brock, T. H., & Vincent, A. C. (1991). Sexual selection and the potential reproductive rates of males and females. Nature, 351, 58–60.PubMedCrossRefGoogle Scholar
  16. Cressie, N. (1980). Relaxing assumptions in the one sample t-test. Australian and New Zealand Journal of Statistics, 22, 153.Google Scholar
  17. Cuthill, I. C. (2006). Color perception. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration (Vol. 1, pp. 3–40). Cambridge, MA: Harvard University Press.Google Scholar
  18. Del Hoyo, J., Elliott, A., Sargatal, J., Cabot, J., Carboneras, C., Folch, A., et al. (1992). Handbook of the birds of the world (Vol. 1). Barcelona: Lynx Edicions.Google Scholar
  19. Donne-Goussé, C., Laudet, V., & Hänni, C. (2002). A molecular phylogeny of Anseriformes based on mitochondrial DNA analysis. Molecular Phylogenetics and Evolution, 23, 339–356.PubMedCrossRefGoogle Scholar
  20. Dunn, P. O., Whittingham, L. A., & Pitcher, T. E. (2001). Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution, 55, 161–175.PubMedGoogle Scholar
  21. Dunning, J. C. (2007). CRC handbook of avian body masses (2nd ed.). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  22. Emlen, S. T., & Oring, L. W. (1977). Ecology, sexual selection, and the evolution of mating systems. Science, 197, 215–233.PubMedCrossRefGoogle Scholar
  23. Figuerola, J., & Green, A. J. (2000). The evolution of sexual dimorphism in relation to mating patterns, cavity nesting, insularity and sympathy in the Anseriformes. Functional Ecology, 14, 701–710.CrossRefGoogle Scholar
  24. Figuerola, J., & Green, A. J. (2006). A comparative study of egg mass and clutch size in the Anseriformes. Journal of Ornithology, 147, 57–68.CrossRefGoogle Scholar
  25. Gadgil, M., & Bossert, W. H. (1970). Life historical consequences of natural selection. The American Naturalist, 104, 1–24.CrossRefGoogle Scholar
  26. Gonzalez, J., Düttmann, H., & Wink, M. (2009). Phylogenetic relationships based on two mitochondrial genes and hybridization patterns in Anatidae. Journal of Zoology, 279, 310–318.CrossRefGoogle Scholar
  27. Goodwin, B. J., McAllister, A. J., & Fahrig, L. (1999). Predicting invasiveness of plant species based on biological information. Conservation Biology, 13, 422–426.CrossRefGoogle Scholar
  28. Griebler, E. M., & Böhning-Gaese, K. (2004). Evolution of clutch size along latitudinal gradients: Revisiting Ashnmole’s hypothesis. Evolutionary Ecology Research, 6, 679–694.Google Scholar
  29. Gustafsson, L., Nordling, D., Andersson, M. S., Sheldon, B. C., & Qvarnström, A. (1994). Infectious diseases, reproductive effort and the cost of reproduction in birds. Philosophical transactions of the Royal Society of London Series B, 346, 323–331.PubMedCrossRefGoogle Scholar
  30. Hamilton, T. H. (1961). On the functions and causes of sexual dimorphism in breeding plumage characteristics of North American species of warblers and orioles. The American Naturalist, 45, 121–123.CrossRefGoogle Scholar
  31. Hamilton, W. D. (1979). Wingless and fighting males in fig wasps and other insects. In M. S. Blum & N. A. Blum (Eds.), Sexual selection and reproductive systems in insects (pp. 167–200). New York: Academic Press.Google Scholar
  32. Hamilton, W. D., & Zuk, M. (1982). Heritable true fitness and bright birds: A role for parasites? Science, 218, 384–387.PubMedCrossRefGoogle Scholar
  33. Hirshfield, M. F., & Tinkle, D. W. (1975). Natural selection and the evolution of reproductive effort. Proceedings of the National Academy of Sciences of the United States of America, 72, 2227–2231.PubMedCrossRefGoogle Scholar
  34. Hone, D. W., Keesey, T. M., Pisani, D., & Purvis, A. (2005). Macroevolutionary trends in the Dinosauria: Cope’s rule. Journal of Evolutionary Biology, 18, 587–595.PubMedCrossRefGoogle Scholar
  35. Hughes, A. L., Friedman, R., & Glenn, N. L. (2006). The future of data analysis in evolutionary genomics. Current Genomics, 7, 227–234.CrossRefGoogle Scholar
  36. Ims, R. A. (1988). The potential for sexual selection in males: Effect of sex ratio and spatiotemporal distribution of receptive females. Evolutionary Ecology, 2, 338–352.CrossRefGoogle Scholar
  37. Jennions, M. D., & Kokko, H. (2010). Sexual selection. In D. F. Westneat & C. W. Fox (Eds.), Evolutionary behavioral ecology (pp. 343–364). New York: Oxford University Press.Google Scholar
  38. Jetz, W., Sekercioglu, C. H., & Böhning-Gaese, K. (2008). The worldwide variation in avian clutch size across species and space. PLoS Biology, 6(12), e303.CrossRefGoogle Scholar
  39. Johnsgard, P. (1965). Handbook of waterfowl behavior. Ithaca, NY: Comstock.Google Scholar
  40. Kear, J. (1970). The adaptive radiation of parental care in waterfowl. In J. H. Crook (Ed.), Social behaviour in birds and mammals (pp. 357–392). London: Academic Press.Google Scholar
  41. Kokko, H., & Monaghan, P. (2001). Predicting the direction of sexual selection. Ecology Letters, 4, 159–165.CrossRefGoogle Scholar
  42. Lack, D. L. (1968). Ecological adaptations for breeding in birds. London: Methuen.Google Scholar
  43. Maddison, W. P. (2000). Testing character correlation using pairwise comparisons on a phylogeny. Journal of Theoretical Biology, 202, 195–204.PubMedCrossRefGoogle Scholar
  44. Martins, E. P., & Hansen, T. F. (1996). The statistical analysis of interspecific data: A review and evaluation of phylogenetic comparative methods. In E. P. Martins (Ed.), Comparative methods in animal behavior (pp. 22–75). New York: Oxford University Press.Google Scholar
  45. Møller, A. P., & Birkhead, T. R. (1992). A pairwise comparative method as illustrated by copulation frequency in birds. The American Naturalist, 139, 644–656.CrossRefGoogle Scholar
  46. Moulton, D. W., & Weller, M. W. (1984). Biology and conservation of the Laysan Duck (Anas laysanensis). Condor, 86, 105–117.CrossRefGoogle Scholar
  47. Omland, K. E. (1997). Examining two standard assumptions of ancestral reconstructions: Repeated loss of dichromatism in dabbling ducks (Anatini). Evolution, 51, 1636–1641.CrossRefGoogle Scholar
  48. Oring, L. W., & Sayler, R. D. (1992). The mating systems of waterfowl. In B. D. Batt, A. D. Afton, M. G. Anderson, C. D. Ankney, D. H. Johnson, J. A. Kadlec, & G. L. Krapu (Eds.), Ecology and management of breeding waterfowl (pp. 190–213). Minneapolis: University of Minnesota Press.Google Scholar
  49. Peters, J. L., McCracken, K. G., Zhuravlev, Y. N., Lu, Y., Wilson, R. E., Johnson, K. P., et al. (2005). Phylogenetics of wigeons and allies (Anatidae: Anas): The importance of sampling multiple loci and multiple individuals. Molecular Phylogenetics and Evolution, 35, 209–224.PubMedCrossRefGoogle Scholar
  50. Read, A. F., & Nee, S. (1995). Inference from binary comparative data. Journal of Theoretical Biology, 173, 99–108.CrossRefGoogle Scholar
  51. Reynolds, M. H., Crampton, L. H., & Vekasy, M. S. (2007). Laysan Teal Anas laysanensis nesting phenology and site characteristics on Laysan Island. Wildfowl, 57, 54–67.Google Scholar
  52. Reynolds, M. H., & Work, T. M. (2005). Mortality in the endangered Laysan Teal Anas laysansensis: Conservation implications. Wildfowl, 55, 31–48.Google Scholar
  53. Rohwer, F. C. (1988). Inter- and intraspecific relationships between egg size and clutch size in waterfowl. Auk, 105, 161–176.Google Scholar
  54. Rohwer, F. C. (1992). The evolution of reproductive patterns in waterfowl. In B. D. Batt, A. D. Afton, M. G. Anderson, C. D. Ankney, D. H. Johnson, J. A. Kadlec, & G. L. Krapu (Eds.), Ecology and management of breeding waterfowl (pp. 190–213). Minneapolis: University of Minnesota Press. (pp 486-539).Google Scholar
  55. Stearns, S. C. (1989). Trade-offs in life history evolution. Functional Ecology, 3, 259–268.CrossRefGoogle Scholar
  56. Trivers, R. L. (1972). Parental effort and sexual selection. In B. G. Campbell (Ed.), Sexual selection and the descent of man, 1871–1971 (pp. 136–179). Chicago: Aldine.Google Scholar
  57. Weller, M. W. (1980). The island waterfowl. Ames: Iowa State University Press.Google Scholar
  58. Wickman, P.-O. (1992). Sexual selection and butterfly design—A comparative study. Evolution, 46, 1525–1536.CrossRefGoogle Scholar
  59. Williams, G. C. (1966). Adaptation and natural selection. Princeton, NJ: Princeton University Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of South CarolinaColumbiaUSA

Personalised recommendations