Evolutionary Biology

, Volume 39, Issue 2, pp 148–157 | Cite as

Evolving Concepts of Bacterial Species

  • Timothy G. Barraclough
  • Kevin J. Balbi
  • Richard J. Ellis
Synthesis Paper

Abstract

The same evolutionary forces that cause diversification in sexual eukaryotes are expected to cause diversification in bacteria. However, in bacteria, the wider variety of mechanisms for gene exchange (or lack thereof) increases the range of expected diversity patterns compared to those of sexual organisms. Two parallel concepts for bacterial speciation have developed, based on ecological divergence or barriers to recombination in turn. Recent evidence from DNA sequence data shows that both processes can generate independently evolving groups that are equivalent to sexual species and that represent separate arenas within which recombination (when it occurs), selection and drift occur. It remains unclear, however, how often different processes act in concert to generate simple units of diversity, or whether a more complex model of diversity is required, specifying hierarchical levels at which different cohesive processes operate. We advocate an integrative approach that evaluates the effects of multiple evolutionary forces on diversity patterns. There is also great potential for laboratory studies of bacterial evolution that test evolutionary mechanisms inferred from population genetic analyses of multi-locus and genome sequence data.

Keywords

Bacteria Prokaryotes Species Speciation Diversification Recombination Divergent selection Horizontal gene transfer Lateral gene transfer Multi-locus sequence types Genomes Niches 

References

  1. Achtman, M., & Wagner, M. (2008). Microbial diversity and the genetic nature of microbial species. Nature Reviews Microbiology, 6, 431–440.PubMedGoogle Scholar
  2. Acinas, S. G., Klepac-Ceraj, V., Hunt, D. E., Pharino, C., Ceraj, I., Distel, D. L., et al. (2004). Fine-scale phylogenetic architecture of a complex bacterial community. Nature, 430, 551–554.PubMedCrossRefGoogle Scholar
  3. Ackerly, D. D. (2003). Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences, 164, S165–S184.CrossRefGoogle Scholar
  4. Arnold, M. L., & Martin, N. H. (2010). Hybrid fitness across time and habitats. Trends in Ecology & Evolution, 25, 530–536.CrossRefGoogle Scholar
  5. Balbi, K. J., Barraclough, T. G., & Ellis, R. J. A population genetic approach to defining bacterial species: Coexistence of multiple, independently-recombining bacterial lineages (in preparation).Google Scholar
  6. Baltrus, D. A., Guillemin, K., & Phillips, P. C. (2008). Natural transformation increases the rate of adaptation in the human pathogen helicobacter pylori. Evolution, 62, 39–49.PubMedGoogle Scholar
  7. Barraclough, T. G. (2010). Evolving entities: Towards a unified framework for understanding diversity at the species and higher levels. Philosophical Transactions of the Royal Society of London. Series B, 365, 1801–1813.PubMedCrossRefGoogle Scholar
  8. Barraclough, T. G., Birky, C. W., & Burt, A. (2003). Diversification in sexual and asexual organisms. Evolution, 57, 2166–2172.PubMedGoogle Scholar
  9. Barraclough, T. G., Hughes, M., Ashford-Hodges, N., & Fujisawa, T. (2009). Inferring evolutionarily significant units of bacterial diversity from broad environmental surveys of single-locus data. Biology Letters, 5, 425–428.PubMedCrossRefGoogle Scholar
  10. Buckling, A., Maclean, R. C., Brockhurst, M. A., & Colegrave, N. (2009). The Beagle in a bottle. Nature, 457, 824–829.PubMedCrossRefGoogle Scholar
  11. Cadillo-Quiroz, H., Didelot, X., Held, N. L., Herrera, A., Darling, A., et al. (2012). Patterns of gene flow define species of thermophilic Archaea. PLoS Biology, 10(2), e1001265.PubMedCrossRefGoogle Scholar
  12. Carrolo, M., Pinto, F. R., Melo-Cristino, J., & Ramirez, M. (2009). Pherotypes are driving genetic differentiation within Streptococcus pneumoniae. BMC Microbiology, 9, 191. doi:10.1186/1471-2180-9-191.PubMedCrossRefGoogle Scholar
  13. Cohan, F. M. (1994). The effects of rare but promiscuous genetic exchange on evolutionary divergence in prokaryotes. American Naturalist, 143, 965–986.CrossRefGoogle Scholar
  14. Cohan, F. M. (2001). Bacterial species and speciation. System Biology, 50, 513–524.CrossRefGoogle Scholar
  15. Cohan, F. M. (2006). Towards a conceptual and operational union of bacterial systematics, ecology, and evolution. Philosophical Transaction of the Royal Society of London. Series B, 361, 1985–1996.CrossRefGoogle Scholar
  16. Cooper, T. F. (2007). Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli. PLoS Biology, 5, 1899–1905.CrossRefGoogle Scholar
  17. Coyne, J. A., & Orr, H. A. (1997). Patterns of speciation in Drosophila revisited. Evolution, 51, 295–303.CrossRefGoogle Scholar
  18. Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer Associates.Google Scholar
  19. Curtis, T. P., Head, I. M., Lunn, M., Woodcock, S., Schloss, P. D., & Sloan, W. T. (2006). What is the extent of prokaryotic diversity? Philosophical Transaction of the Royal Society of London. Series B, 361, 2023–2037.CrossRefGoogle Scholar
  20. de Visser, J. A. G. M., Cooper, T. F., & Elena, S. F. (2011). The causes of epistasis. Philosophical Transactions of the Royal Society of London. Series B, 278, 3617–3624.Google Scholar
  21. Didelot, X., Bowden, R., Street, T., Golubchik, T., Spencer, C., McVean, G., et al. (2011). Recombination and Population Structure in Salmonella enterica. PLoS Genetics, 7(7), e1002191. doi:10.1371/journal.pgen.1002191.PubMedCrossRefGoogle Scholar
  22. Doolittle, W. F., & Zhaxybayeva, O. (2009). On the origin of prokaryotic species. 2009. Genome Research, 19, 744–756.PubMedCrossRefGoogle Scholar
  23. Doroghazi, J. R., & Buckley, D. H. (2010). Widespread homologous recombination within and between Streptomyces species. ISME Journal, 4, 1136–1143.PubMedCrossRefGoogle Scholar
  24. Eisen, J. A. (2007). Environmental shotgun sequencing: Its potential and challenges foer studying the hidden world of microbes. PLoS Biology, 5, 384–388.CrossRefGoogle Scholar
  25. Ellis, R. J., Lilley, A. K., Lacey, S. J., Murrell, D., & Godfray, H. C. J. (2007). Frequency-dependent advantages of plasmid carriage by Pseudomonas in homogeneous and spatially structured environments. ISME Journal, 1, 92–95.PubMedCrossRefGoogle Scholar
  26. Felsenstein, J. (1981). Skepticism towards Santa Rosalia, or why are there so few kinds of animals? Evolution, 35, 124–138.CrossRefGoogle Scholar
  27. Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Oxford University Press.Google Scholar
  28. Fontaneto, D., Herniou, E. A., Boschetti, C., Caprioli, M., Melone, G., Ricci, C., et al. (2007). Independently evolving species in asexual bdelloid rotifers. PLoS Biology, 5, 914–921.CrossRefGoogle Scholar
  29. Fraser, C., Hanage, W. P., & Spratt, B. G. (2005). Neutral microepidemic evolution of bacterial pathogens. Proceedings of the National academy of Sciences of the United States of America, 102, 1968–1973.PubMedCrossRefGoogle Scholar
  30. Fraser, C., Hanage, W. P., & Spratt, B. G. (2007). Recombination and the nature of bacterial speciation. Science, 315, 476–480.PubMedCrossRefGoogle Scholar
  31. Gevers, D., Cohan, F. M., Lawrence, J. G., Spratt, B. G., Coenye, T., Feil, E. J., et al. (2005). Re-evaluating prokaryotic species. Nature Reviews Microbiology, 3, 733–739.PubMedCrossRefGoogle Scholar
  32. Hanage, W. P., Fraser, C., & Spratt, B. G. (2006). Sequences, sequence clusters and bacterial species. Philosophical Transaction of the Royal Society of London. Series B, 361, 1917–1927.CrossRefGoogle Scholar
  33. Hunt, D. E., David, L. A., Gevers, D., Preheim, S. P., Alm, E. J., & Polz, M. F. (2008). Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science, 320, 1081–1085.PubMedCrossRefGoogle Scholar
  34. Kassen, R., Llewellyn, M., & Rainey, P. B. (2004). Ecological constraints on diversification in a model adaptive radiation. Nature, 431, 984–988.PubMedCrossRefGoogle Scholar
  35. Keymer, D. P., & Boehm, A. B. (2011). Recombination shapes the structure of an environmental vibrio cholerae population. Applied and Environmental Microbiology, 77, 537–544.PubMedCrossRefGoogle Scholar
  36. Koeppel, A., Perry, E. B., Sikorski, J., Krizanc, D., Warner, A., Ward, D. M., et al. (2008). Identifying the fundamental units of bacterial diversity: A paradigm shift to incorporate ecology into bacterial systematics. Proceedings of the National academy of Sciences of the United States of America, 105, 2504–2509.PubMedCrossRefGoogle Scholar
  37. Lawrence, J. G., & Retchless, A. C. (2010). The myth of bacterial species and speciation. Biology and Philosophy, 25, 569–588.CrossRefGoogle Scholar
  38. Lorenz, M. G., & Wackernagel, W. (1994). Bacterial gene-transfer by natural genetic-transformation in the environment. Nature Reviews Microbiology, 58, 563–602.Google Scholar
  39. Luo, C., Walk, S. T., Gordon, D. M., Feldgarden, M., Tiedje, J. M., & Konstantinidis, K. T. (2011). Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proceedings of the National academy of Sciences of the United States of America, 108, 7200–7205.PubMedCrossRefGoogle Scholar
  40. Martiny, A. C., Huang, Y., & Li, W. Z. (2009). Occurrence of phosphate acquisition genes in Prochlorococcus cells from different ocean regions. Environmental Microbiology, 11, 1340–1347.PubMedCrossRefGoogle Scholar
  41. McDonald, J. H., & Kreitman, M. (1991). Adaptive protein evolution at the adh locus in Drosophila. Nature, 351, 652–654.PubMedCrossRefGoogle Scholar
  42. Norman, A., Hansen, L. H., & Sorensen, S. J. (2009). Conjugative plasmids: vessels of the communal gene pool. Philosophical Transaction of the Royal Society of London. Series B, 364, 2275–2289.CrossRefGoogle Scholar
  43. Nosil, P., Funk, D. J., & Ortiz-Barrientos, D. (2009). Divergent selection and heterogeneous genomic divergence. Molecular Ecology, 18, 375–402.PubMedCrossRefGoogle Scholar
  44. O’Sullivan, O., O’Callaghan, J., Sangrador-Vegas, A., McAuliffe, O., Slattery, L., Kaleta, P., et al. (2009). Comparative genomics of lactic acid bacteria reveals a niche-specific gene set. BMC Microbiology, 9, 50. doi:10.1186/1471-2180-9-50.PubMedCrossRefGoogle Scholar
  45. Ochman, H., Lawrence, J. G., & Groisman, E. A. (2000). Lateral gene transfer and the nature of bacterial innovation. Nature, 405, 299–304.PubMedCrossRefGoogle Scholar
  46. Ochman, H., Lerat, E., & Daubin, V. (2005). Examining bacterial species under the specter of gene transfer and exchange. Proceedings of the National academy of Sciences of the United States of America, 102, 6595–6599.PubMedCrossRefGoogle Scholar
  47. Papke, R. T., Zhaxybayeva, O., Feil, E. J., Sommerfeld, K., Muise, D., & Doolittle, W. F. (2007). Searching for species in haloarchaea. Proceedings of the National academy of Sciences of the United States of America, 104, 14092–14097.PubMedCrossRefGoogle Scholar
  48. Perron, G. G., Lee, A. E. G., Wang, Y., Huang, W. E., & Barraclough, T. G. (2011). Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations. Philosophical Transactions of the Royal Society of London. Series B. (Online early).Google Scholar
  49. Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., et al. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. System Biology, 55, 595–609.CrossRefGoogle Scholar
  50. Qin, J. J., Li, R. Q., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59–65.PubMedCrossRefGoogle Scholar
  51. Rappe, M. S., & Giovannoni, S. J. (2003). The uncultured microbial majority. Annual Review of Microbiology, 57, 369–394.PubMedCrossRefGoogle Scholar
  52. Raymond, B., Wyres, K. L., Sheppard, S. K., Ellis, R. J., & Bonsall, M. B. (2010). Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the field. PLoS Pathogens, 6(5), e1000905. doi:10.1371/journal.ppat.1000905.PubMedCrossRefGoogle Scholar
  53. Roberts, M. S., & Cohan, F. M. (1993). The effect of DNA-Sequence divergence on sexual isolation in Bacillus. Genetics, 134, 402–408.Google Scholar
  54. Roberts, M. S., & Cohan, F. M. (1995). Recombination and migration rates in natural populations of Bacillus subtilis and Bacillus mojavensis. Evolution, 49, 1081–1094.CrossRefGoogle Scholar
  55. Schloss, P. D., & Handelsman, J. (2005). Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology, 71, 1501–1506.PubMedCrossRefGoogle Scholar
  56. Sheppard, S. K., McCarthy, N. D., Falush, D., & Maiden, M. C. J. (2008). Convergence of Campylobacter species: Implications for bacterial evolution. Science, 320, 237–239.PubMedCrossRefGoogle Scholar
  57. Smillie, C. S., Smith, M. B., Friedman, J., Cordero, O. X., David, L. A., & Alm, E. J. (2011). Ecology drives a global network of gene exchange connecting the human microbiome. Nature (Online early).Google Scholar
  58. Sobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. (2010). The biology of speciation. Evolution, 64, 295–315.PubMedCrossRefGoogle Scholar
  59. Stackebrandt, E., & Ebers, J. (2006). Taxonomic parameters revisited: Tarnished gold standards. Microbiol Today, 33, 152–155.Google Scholar
  60. Tautz, D., Arctander, P., Minelli, A., Thomas, R. H., & Vogler, A. P. (2003). A plea for DNA taxonomy. Trends in Ecology & Evolution, 18, 70–74.CrossRefGoogle Scholar
  61. Templeton, A. (1989). The meaning of species and speciation: a population genetics approach. In D. Otte & J. Endler (Eds.), Speciation and its consequences. Sunderland, MA: Sinauer Associates.Google Scholar
  62. Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., et al. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304, 66–74.PubMedCrossRefGoogle Scholar
  63. Vos, M. (2009). Why do bacteria engage in homologous recombination? Trends in Microbiology, 17, 226–232.PubMedCrossRefGoogle Scholar
  64. Vos, M. (2011). A species concept for bacteria based on adaptive divergence. Trends in Microbiology, 19, 1–7.PubMedCrossRefGoogle Scholar
  65. Vos, M., Birkett, P. J., Birch, E., Griffiths, R. I., & Buckling, A. (2009). Local adaptation of bacteriophages to their bacterial hosts in soil. Science, 325, 833–834.PubMedCrossRefGoogle Scholar
  66. Vulic, M., Lenski, R. E., & Radman, M. (1999). Mutation, recombination, and incipient speciation of bacteria in the laboratory. Proceedings of the National academy of Sciences of the United States of America, 96, 7348–7351.PubMedCrossRefGoogle Scholar
  67. Whitaker, R. J. (2006). Allopatric origins of microbial species. Philosophical Transactions of the Royal Society of London. Series B, 361, 1975–1984.PubMedCrossRefGoogle Scholar
  68. Whitaker, R. J., & Banfield, J. F. (2006). Population genomics in natural microbial communities. Trends in Ecology & Evolution, 21, 508–516.CrossRefGoogle Scholar
  69. Wiedenbeck, J., & Cohan, F. M. (2011). Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiology Reviews, 35, 957–976.PubMedCrossRefGoogle Scholar
  70. Wu, X., Monchy, S., Taghavi, S., Zhu, W., Ramos, J., & van der Lelie, D. (2011). Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiology Reviews, 35, 299–323.PubMedCrossRefGoogle Scholar
  71. Zawadzki, P., Roberts, M. S., & Cohan, F. M. (1995). The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics, 140, 917–932.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Timothy G. Barraclough
    • 1
  • Kevin J. Balbi
    • 1
  • Richard J. Ellis
    • 2
  1. 1.Department of Life SciencesImperial College LondonAscot, BerkshireUK
  2. 2.Animal Health and Veterinary Laboratories Agency, AHVLA WeybridgeSurreyUK

Personalised recommendations