Evolutionary Biology

, Volume 39, Issue 2, pp 262–270 | Cite as

Different Diversification Rates Between Sexual and Asexual Organisms

  • Diego Fontaneto
  • Cuong Q. Tang
  • Ulrike Obertegger
  • Francesca Leasi
  • Timothy G. Barraclough
Research Article

Abstract

Patterns of diversity reflect the balance between speciation and extinction over time. Here we estimate net diversification rates for samples of sexual and asexual rotifers using phylogenetic reconstructions from sequence data of one mtDNA locus, cytochrome oxidase c subunit I. All four clades of bdelloid rotifers, obligate asexuals, had higher number of species per clade and significantly higher accumulation of diversification events towards the root of the trees than the four clades of their sexual relatives, the monogonont rotifers. Such differences were robust to confounding effects of number of analysed sequences, haplotype diversity, overall genetic divergence, age of the clades or geographic coverage. Our results support the idea that differences in diversification rates could thus be ascribed to different mechanisms of speciation, with ecological speciation as the most plausible mechanism for asexual organisms.

Keywords

DNA taxonomy γ Statistics Lineage-through-time plot Rotifera Speciation 

References

  1. Alfaro, M. E., Santini, F., & Brock, C. D. (2007). Do reefs drive diversification in marine teleosts? Evidence from the pufferfish and their allies (order Tetraodontiformes). Evolution, 61, 2104–2126.PubMedCrossRefGoogle Scholar
  2. Artois, T., Fontaneto, D., Hummon, W. D., McInnes, S. J., Todaro, M. A., Sørensen, M. V., et al. (2011). Ubiquity of microscopic animals? Evidence from the morphological approach in species identification. In D. Fontaneto (Ed.), Biogeography of microscopic organisms, is everything small everywhere? (pp. 244–283). Cambridge: Cambridge University Press.Google Scholar
  3. Baer, A., Langdon, C., Mills, S., Schulz, C., & Hamre, K. (2008). Particle size preference, gut filling and evacuation rates of the rotifer Brachionus ‘Cayman’ using polystyrene latex beads. Aquaculture, 282, 75–82.CrossRefGoogle Scholar
  4. Birky, C. W. Jr & Barraclough, T. G. (2009). Asexual speciation. In I. Scon, K. Martens & P. van Dijk (Eds.), Lost sex: The evolutionary biology of parthenogenesis (pp. 201–216). Dordrecht: Springer.Google Scholar
  5. Barraclough, T. G., Birky, C. W., & Burt, A. (2003). Diversification in sexual and asexual organisms. Evolution, 57, 2166–2172.PubMedGoogle Scholar
  6. Barraclough, T. G., Fontaneto, D., Ricci, C., & Herniou, E. A. (2007). Evidence for inefficient selection against deleterious mutations in cytochrome oxidase I of asexual bdelloid rotifers. Molecular Biology and Evolution, 24, 1952–1962.PubMedCrossRefGoogle Scholar
  7. Birky, C. W., Jr, Wolf, C., Maughan, H., Herbertson, L., & Henry, E. (2005). Speciation and selection without sex. Hydrobiologia, 546, 29–45.CrossRefGoogle Scholar
  8. Birky, C. W., Jr, Adams, J., Gemmel, M., & Perry, J. (2010). Using population genetic theory and DNA sequences for species detection and identification in asexual organisms. PLoS ONE, 5(5), e10609.PubMedCrossRefGoogle Scholar
  9. Bode, S. N. S., Adolfsson, S., Lamatsch, D. K., Martins, M. J. F., Schmit, O., Vandekerkhove, J., et al. (2010). Exceptional cryptic diversity and multiple origins of parthenogenesis in a freshwater ostracod. Molecular Phylogenetics and Evolution, 54, 542–552.PubMedCrossRefGoogle Scholar
  10. Briski, E., Cristescu, M. E., Bailey, S. A., & MacIsaac, H. J. (2011). Use of DNA barcoding to detect invertebrate invasive species from diapausing eggs. Biological Invasions, 13, 1325–1340.CrossRefGoogle Scholar
  11. Brock, C. D., Harmon, L. J., & Alfaro, M. E. (2011). Testing for temporal variation in diversification rates when sampling is incomplete and non-random. Systematic Biology, 60, 410–419.PubMedCrossRefGoogle Scholar
  12. Campillo, S., Garcia-Roger, E. M., Martinez-Torres, D., & Serra, M. (2005). Morphological stasis of two species belonging to the L-morphotype in the Brachionus plicatilis species complex. Hydrobiologia, 546, 181–187.CrossRefGoogle Scholar
  13. Colwell, R. K., & Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London B, 345, 101–118.CrossRefGoogle Scholar
  14. Crawley, M. J. (2007). The R book. Chichester: Wiley.CrossRefGoogle Scholar
  15. Cusimano, N., & Renner, S. S. (2010). Slowdowns in diversification rates from real phylogenies may not be real. Systematic Biology, 59, 458–464.PubMedCrossRefGoogle Scholar
  16. Derry, A. M., Hebert, P. D. N., & Prepas, E. E. (2003). Evolution of rotifers in saline and subsaline lakes: A molecular phylogenetic approach. Limnology and Oceanography, 48, 675–685.CrossRefGoogle Scholar
  17. Fontaneto, D., Herniou, E. A., Boschetti, C., Caprioli, M., Melone, G., Ricci, C., et al. (2007). Evidence for independently evolving species in bdelloid rotifers. PLoS Biology, 5, 914–921.CrossRefGoogle Scholar
  18. Fontaneto, D., Barraclough, T. G., Chen, K., Ricci, C., & Herniou, E. A. (2008). Molecular evidence for broad-scale distributions in bdelloid rotifers: Everything is not everywhere but most things are very widespread. Molecular Ecology, 17, 3136–3146.PubMedCrossRefGoogle Scholar
  19. Fontaneto, D., Kaya, M., Herniou, E. A., & Barraclough, T. G. (2009). Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Molecular Phylogenetics and Evolution, 53, 182–189.PubMedCrossRefGoogle Scholar
  20. Fontaneto, D., Iakovenko, N., Eyres, I., Kaya, M., Wyman, M., & Barraclough, T. G. (2011). Cryptic diversity in the genus Adineta Hudson & Gosse, 1886 (Rotifera: Bdelloidea: Adinetidae): A DNA taxonomy approach. Hydrobiologia, 662, 27–33.CrossRefGoogle Scholar
  21. Fordyce, J. A. (2010). Interpreting the γ statistic in phylogenetic diversification rate studies: A rate decrease does not necessarily indicate an early burst. PLoS ONE, 5(7), e11781.PubMedCrossRefGoogle Scholar
  22. Gilbert, J. J., & Walsh, E. J. (2005). Brachionus calyciflorus is a species complex: Mating behavior and genetic differentiation among four geographically isolated strains. Hydrobiologia, 546, 257–265.CrossRefGoogle Scholar
  23. Gómez, A., Carvalho, G. R., & Lunt, D. H. (2000). Phylogeography and regional endemism of a passively dispersing zooplankter: Mitochondrial DNA variation in rotifer resting egg banks. Proceedings of the Royal Society of London B, 267, 2189–2197.CrossRefGoogle Scholar
  24. Gómez, A., Serra, M., Carvalho, G. R., & Lunt, D. H. (2002). Speciation in ancient cryptic species complexes: Evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution, 56, 1431–1444.PubMedGoogle Scholar
  25. Gómez, A., Montero-Pau, J., Lunt, D. H., Serra, M., & Campillo, S. (2007). Persistent genetic signatures of colonization in Brachionus manjavacas rotifers in the Iberian Peninsula. Molecular Ecology, 16, 3228–3240.PubMedCrossRefGoogle Scholar
  26. Guindon, S., & Gascuel, O. (2003). A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.PubMedCrossRefGoogle Scholar
  27. Harmon, L. J., Schulte, J. A., Larson, A., & Losos, J. B. (2003). Tempo and mode of evolutionary radiation in iguanian lizards. Science, 301, 961–964.PubMedCrossRefGoogle Scholar
  28. Heethoff, M., Domes, K., Laumann, M., Maraun, M., Norton, R. A., & Scheu, S. (2007). High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). Journal of Evolutionary Biology, 20, 392–402.PubMedCrossRefGoogle Scholar
  29. Kaya, M., Herniou, E. A., Barraclough, T. G., & Fontaneto, D. (2009). Inconsistent estimates of diversity between traditional and DNA taxonomy in bdelloid rotifers. Organisms, Diversity and Evolution, 9, 3–12.CrossRefGoogle Scholar
  30. Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J., & Mclnerney, J. O. (2006). Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evolutionary Biology, 6, 29.PubMedCrossRefGoogle Scholar
  31. Lowe, C. D., Kemp, S. J., Diaz-Avalos, C., & Montagnes, D. J. S. (2007). How does salinity tolerance influence the distributions of Brachionus plicatilis sibling species? Marine Biology, 150, 377–386.CrossRefGoogle Scholar
  32. Maynard Smith, J. (1978). The evolution of sex. New York, NY: Cambridge University Press.Google Scholar
  33. McLeish, M. J., Van Noort, S., & Tolley, K. A. (2010). Parasitoid fig-wasp evolutionary diversification and variation in ecological opportunity. Molecular Ecology, 19, 1483–1496.PubMedCrossRefGoogle Scholar
  34. McPeek, M. A. (2008). The ecological dynamics of clade diversification and community assembly. American Naturalist, 172, E270–E284.PubMedCrossRefGoogle Scholar
  35. Mills, S., Lunt, D. H., & Gómez, A. (2007). Global isolation by distance despite strong regional phylogeography in a small metazoan. BMC Evolutionary Biology, 7, 225.PubMedCrossRefGoogle Scholar
  36. Orr, H. A. (2000). The rate of adaptation in asexuals. Genetics, 155, 961–968.PubMedGoogle Scholar
  37. Otto, S. P., & Lenormand, T. (2002). Resolving the paradox of sex and recombination. Nature Reviews Genetics, 2, 252–261.CrossRefGoogle Scholar
  38. Papakostas, S., Dooms, S., Christodoulou, M., Triantafyllidis, A., Kappas, I., Dierckens, K., et al. (2006). Identification of cultured Brachionus rotifers based on RFLP and SSCP Screening. Marine Biotechnology, 8, 547–559.PubMedCrossRefGoogle Scholar
  39. Paradis, E., Bolker, B., Claude, J., Cuong, H. S., Desper, R., Durand, B., Dutheil, J., Gascuel, O., Heibl, C., Lawson, D., Lefort, V., Legendre, P., Lemon, J., Noel, Y., Nylander, J., Opgen-Rhein, R., Schliep, K., Strimmer, K. & de Vienne, D. (2011). Package ape 2.7-3. Analyses of Phylogenetics and Evolution. http://ape.mpl.ird.fr/.
  40. Phillimore, A. B., & Price, T. D. (2008). Density-dependent cladogenesis in birds. PLoS Biology, 6(3), e71.PubMedCrossRefGoogle Scholar
  41. Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., et al. (2006). Sequence based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55, 595–609.PubMedCrossRefGoogle Scholar
  42. Pybus, O. G., & Harvey, P. H. (2000). Testing macro-evolutionary models using incomplete molecular phylogenies. Proceedings of the Royal Society of London B, 267, 2267–2272.CrossRefGoogle Scholar
  43. R Development Core Team. (2011). R: A language and environment for statistical computing. Vienna, Austria. Available from http://www.R-project.org.
  44. Rabosky, D. L. (2009). Ecological limits on clade diversification in higher taxa. American Naturalist, 173, 662–674.PubMedCrossRefGoogle Scholar
  45. Rabosky, D. L., & Lovette, I. J. (2008). Density-dependent diversification in North American wood warblers. Proceedings of the Royal Society of London B, 275, 2363–2371.CrossRefGoogle Scholar
  46. Ricklefs, R. E. (2006). Global variation in the diversification rate of passerine birds. Ecology, 87, 2468–2478.PubMedCrossRefGoogle Scholar
  47. Ricklefs, R. E. (2007). Estimating diversification rates from phylogenetic information. Trends in Ecology & Evolution, 22, 601–610.CrossRefGoogle Scholar
  48. Sanderson, M. J. (2002). Estimating absolute rates of molecular evolution and divergence times: A penalized likelihood approach. Molecular Biology and Evolution, 19, 101–109.PubMedCrossRefGoogle Scholar
  49. Schluter, D. (2000). The ecology of adaptive radiation. New York, NY: Oxford University Press.Google Scholar
  50. Schon, I., Martens, K., & van Dijk, P. (2009). Lost sex: The evolutionary biology of parthenogenesis. Dordrecht: Springer.Google Scholar
  51. Schwander, T., & Crespi, B. J. (2008). Twigs on the tree of life? Neutral and selective models for integrating macroevolutionary patterns with microevolutionary processes in the analysis of asexuality. Molecular Ecology, 18, 28–42.PubMedCrossRefGoogle Scholar
  52. Sorensen, M. V., & Giribet, G. (2006). A modern approach to rotiferan phylogeny: Combining morphological and molecular data. Molecular Phylogenetics and Evolution, 40, 585–608.PubMedCrossRefGoogle Scholar
  53. Suatoni, E., Vicario, S., Rice, S., Snell, T., & Caccone, A. (2006). An analysis of species boundaries and biogeographic patterns in a cryptic species complex: The rotifer Brachionus plicatilis. Molecular Phylogenetics and Evolution, 41, 86–98.PubMedCrossRefGoogle Scholar
  54. Swanstrom, J., Chen, K., Castillo, K., Barraclough, T. G., & Fontaneto, D. (2011). Testing for evidence of inefficient selection in bdelloid rotifers: Do sample size and heterogeneity matter? Hydrobiologia, 662, 19–25.CrossRefGoogle Scholar
  55. Valente, L. M., Savolainen, V., & Vargas, P. (2010). Unparalleled rates of species diversification in Europe. Proceedings of the Royal Society of London B, 277, 1489–1496.CrossRefGoogle Scholar
  56. Wallace, R. L., Snell, T. W., Ricci, C. & Nogrady, T. (2006). Rotifera, biology, ecology and systematics. (2nd ed.). Guides to the Identification of the microinvertebrates of the continental waters of the world, 23. Ghent, Leiden: Kenobi Productions, Backhuys Publishers.Google Scholar
  57. Wilke, T., Schultheiß, R., & Albrecht, C. (2009). As time goes by: A simple fool’s guide to molecular clock approaches in invertebrates. American Malacological Bulletin, 27, 25–45.CrossRefGoogle Scholar
  58. Xiang, X. L., Xi, Y. L., Wen, X. L., Zhang, J. Y., & Ma, Q. (2010). Spatial patterns of genetic differentiation in Brachionus calyciflorus species complex collected from East China in summer. Hydrobiologia, 638, 67–83.CrossRefGoogle Scholar
  59. Xiang, X. L., Xi, Y. L., Wen, X. L., Zhang, G., Wang, J. X., & Hu, K. (2011). Genetic differentiation and phylogeographical structure of the Brachionus calyciflorus complex in eastern China. Molecular Ecology, 20, 3027–3044.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Diego Fontaneto
    • 1
  • Cuong Q. Tang
    • 1
  • Ulrike Obertegger
    • 2
  • Francesca Leasi
    • 1
  • Timothy G. Barraclough
    • 1
  1. 1.Division of BiologyImperial College LondonAscot BerkshireUK
  2. 2.Sustainable Agro-ecosystems and Bioresources DepartmentEdmund Mach Foundation, IASMA Research and Innovation CentreSan Michele all’AdigeItaly

Personalised recommendations