Evolutionary Biology

, Volume 39, Issue 4, pp 447–455 | Cite as

The Developmental Origins of Mosaic Evolution in the Primate Limb Skeleton

Synthesis Paper


The central hypothesis of this paper is that basic properties of vertebrate limb development bias the generation of phenotypic variation in certain directions, and that these biases establish focal units, or regions, of evolutionary change within the primate hand and foot. These focal units include (1) a preaxial domain (digit I, hallux or pollex, metapodial and proximal phalanx), (2) a postaxial domain (metapodials and phalanges of digits II–V), and (3) a digit tip domain (terminal phalanges and nails/claws of rays I–V). The existence of these focal units therefore provides a mechanistic basis for mosaic evolution within the hand and foot, and can be applied to make specific predictions about which features of the limb skeleton are most likely to be altered in primate adaptive radiations over time. Examination of the early primate fossil record provides support for this model, and suggests that the existence of variational tendencies in limb development has played a major role in guiding the origin and evolution of primate skeletal form.


Evolvability Autopod Digits Euprimates Euarchonta 



I am grateful to Drs. Philipp Gunz and Philipp Mitteröcker for inviting me to participate in the Symposium on Human Evolution and Development held at the Konrad Lorenz Institute in Altenberg, Austria. Prof. Dr. Gerd Müller, Eva Karner, and Astrid Juette provided wonderful hospitality during the visit. Drs. Jukka Jernvall, Frietson Galis, and Benedikt Hallgrimmson provided helpful discussions on aspects of limb evolution and development.


  1. Bastida, M., & Ros, M. (2008). How do we get a perfect complement of digits? Current Opinion in Genetics and Development, 18, 374–380.PubMedCrossRefGoogle Scholar
  2. Bloch, J., & Boyer, D. (2002). Grasping primate origins. Science, 298, 1606–1610.PubMedCrossRefGoogle Scholar
  3. Bloch, J., Silcox, M., Boyer, D., & Sargis, E. (2007). New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates. Proceedings of the National Academy of Sciences USA, 104, 1159–1164.CrossRefGoogle Scholar
  4. Buffa, R., Marini, E., Cabras, S., Scalas, G., & Floris, G. (2007). Patterns of hand variation-new data on a Sardinian sample. Collegium Antropologicum, 31, 325–330.PubMedGoogle Scholar
  5. Carroll, S. B. (2008). Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell, 134, 25–36.PubMedCrossRefGoogle Scholar
  6. Casanova, J. C., & Sanz-Ezquerro, J. J. (2007). Digit morphogenesis: Is the tip different? Development, Growth, Differentiation, 49, 479–491.CrossRefGoogle Scholar
  7. Chiu, C.-H., & Hamrick, M. W. (2002). Evolution and development of the primate limb skeleton. Evolutionary Anthropology, 11, 94–107.CrossRefGoogle Scholar
  8. Cohn, M., & Tickle, C. (1999). Developmental basis of limblessness and axial patterning in snakes. Nature, 399, 474–479.PubMedCrossRefGoogle Scholar
  9. Cretekos, C., Wang, Y., Green, E., Martin, J., Rasweiler, J., & Behringer, R. (2008). Regulatory divergence modifies limb length between mammals. Genes and Development, 22, 141–151.PubMedCrossRefGoogle Scholar
  10. Dagosto, M. (1988). Implications of postcranial evidence for the origin of euprimates. Journal of Human Evolution, 17, 35–56.CrossRefGoogle Scholar
  11. Drossopoulou, G., Lewis, K., Sanz-Ezquerro, J., Nikbakht, N., McMahon, A., Hofman, C., et al. (2000). A model for anteroposterior patterning of the vertebrate limb based on sequential long- and short-range Shh signaling and Bmp signaling. Development, 127, 1337–1348.PubMedGoogle Scholar
  12. Franzen, J., Gingerich, P., Habersetzer, J., Hurum, H., von Koenigswald, W., & Smith, B. (2009). Complete primate skeleton from the middle Eocene of Messel in Germany: Morphology and paleobiology. PLoS One, 19, e5723.CrossRefGoogle Scholar
  13. Galis, F., van Alphen, J., & Metz, J. (2001). Why five fingers? Evolutionary constraints on digit numbers. Trends in Ecology & Evolution, 16, 637–646.CrossRefGoogle Scholar
  14. Gebo, D. (2004). A shrew-sized origin for primates. Yearbook of Physical Anthropology, 74, 40–62.CrossRefGoogle Scholar
  15. Godinot, M. (1992). Early euprimate hands in evolutionary perspective. Journal of Human Evolution, 22, 267–283.CrossRefGoogle Scholar
  16. Godinot, M., & Beard, K. C. (1991). Fossil primate hands: A review and an evolutionary inquiry emphasizing early forms. Human Evolution, 6, 307–354.CrossRefGoogle Scholar
  17. Greer, A. (1987). Limb reduction in the lizard genus Lerista. 1. Variation in the number of phalanges and presacral vertebrae. Journal of Herpetology, 21, 267–276.CrossRefGoogle Scholar
  18. Hamrick, M. W., & Alexander, J. (1996). The hand skeleton of Notharctus tenebrosus (Primates, Notharctidae) and its significance for the origin of the Primate hand. American Museum Novitates, 3182, 1–20.Google Scholar
  19. Hamrick, M. W. (1998). Functional and adaptive significance of primate pads and claws: Evidence from New World anthropoids. American Journal of Physical Anthropology, 106, 113–127.PubMedCrossRefGoogle Scholar
  20. Hamrick, M. W. (2001). Development and evolution of the mammalian limb: Adaptive diversification of nails, hooves, and claws. Evolution & Development, 3, 355–363.CrossRefGoogle Scholar
  21. Hamrick, M. W. (2003). Evolution and development of mammalian limb integumentary structures. Journal of Experimental Zoology B (Molecular & Developmental Evolution), 298B, 152–163.CrossRefGoogle Scholar
  22. Hamrick, M. W. (2007). Evolvability, limb morphology, and primate origins. In M. Ravosa & M. Dagosto (Eds.), Primate origins: Adaptations and evolution. New York: Springer.Google Scholar
  23. Haygood, R., Fedrigo, O., Hanson, B., Yokoyama, K., & Wray, G. (2007). Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution. Nature, 39, 1140–1144.Google Scholar
  24. Hendrikse, J., Parsons, T., & Hallgrimsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development, 9, 393–401.CrossRefGoogle Scholar
  25. Hentschel, H., Glimm, T., Glazier, J., & Newman, S. A. (2004). Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proceedings of the Royal Society of London B, 271, 1713–1722.CrossRefGoogle Scholar
  26. Hinchliffe, J. R. (1989). Reconstructing the archetype: Innovation and conservatism in the evolution and development of the pentadactyl limb. In D. Wake & G. Roth (Eds.), Complex organismal functions: Integration and evolution in vertebrates. New York: Wiley.Google Scholar
  27. Hinchliffe, J. R. (1991). Developmental approaches to the problem of transformation of limb structure in evolution. In J. R. Hinchliffe, J. Hurle, & D. Summerbell (Eds.), Developmental patterning of the vertebrate limb. New York: Plenum Press.Google Scholar
  28. Hockman, D., Cretekos, C., Mason, M., Behringer, R., Jacobs, D., & Illing, N. (2008). A second wave of Sonic hedgehog expression during the development of the bat limb. Proceedings of National Academy of Sciences USA, 105, 16982–16987.CrossRefGoogle Scholar
  29. Hockman, D., Mason, M., Jacobs, D., & Illing, N. (2009). The role of early development in mammalian limb diversification: A descriptive comparison of early limb development between the Natal long-fingered bat (Miniopterus natalensis) and the mouse (Mus musculus). Developmental Dynamics, 238, 965–979.PubMedCrossRefGoogle Scholar
  30. Hu, J., & He, L. (2008). Patterning mechanisms controlling digit development. Journal of Genetics and Genomics, 35, 517–524.PubMedCrossRefGoogle Scholar
  31. Hunter, J., & Jernvall, J. (1995). The hypocone as a key innovation in mammalian evolution. Proceedings of National Academy of Sciences USA, 92, 10718–10722.CrossRefGoogle Scholar
  32. Jernvall, J. (2000). Linking development with evolutionary novelty in mammalian teeth. Proceedings of the National Academy of Sciences USA, 97, 2641–2645.CrossRefGoogle Scholar
  33. Jernvall, J., Keränen, S. V. E., & Thesleff, I. (2001). Evolutionary modification of development in mammalian teeth: Quantifying gene expression patterns and topography. Proceedings of the National Academy of Sciences USA, 97, 14444–14448.CrossRefGoogle Scholar
  34. Kavanagh, K., Evans, A., & Jernvall, J. (2007). Predicting evolutionary patterns of mammalian teeth from development. Nature, 449, 427–433.PubMedCrossRefGoogle Scholar
  35. Kirk, E., Lemelin, P., Hamrick, M., Boyer, D., & Bloch, J. (2008). Intrinsic hand proportions of euarchontans and other mammals: Implications for the locomotor behavior of plesiadapiforms. Journal of Human Evolution, 55, 278–299.PubMedCrossRefGoogle Scholar
  36. Kirschner, M., & Gerhart, J. (1998). Evolvability. Proceedings of the National Academy of Sciences USA, 95, 8420–8427.CrossRefGoogle Scholar
  37. Kraus, P., Fraidenraich, D., & Loomis, C. (2001). Some distal limb structures develop in mice lacking Sonic hedgehog signaling. Mechanisms of Development, 100, 45–58.PubMedCrossRefGoogle Scholar
  38. Lande, R. (1978). Evolutionary mechanisms of limb loss in tetrapods. Evolution, 32, 73–92.CrossRefGoogle Scholar
  39. Latimer, B., & Lovejoy, C. O. (1990). Hallucal tarsometatarsal joint in Australopithecus afarensis. American Journal of Physical Anthropology, 82, 123–133.CrossRefGoogle Scholar
  40. Lovejoy, C. O., McCollum, M. A., Reno, P. L., & Rosenman, B. A. (2003). Developmental biology and human evolution. Annual Reviews in Anthropology, 32, 85–109.CrossRefGoogle Scholar
  41. Meinhardt, H., & Gierer, A. (2000). Pattern formation by local self-activation and lateral inhibition. BioEssays, 22, 753–760.PubMedCrossRefGoogle Scholar
  42. Montavon, T., Garrec, J., Kerzberg, M., & Duboule, D. (2008). Modelling HOX gene regulation in digits: Reverse collinearity and the molecular origin of thumbness. Genes and Development, 22, 236–259.CrossRefGoogle Scholar
  43. Mori, N., Tsugane, M., Yamashita, K., Ikuta, Y., & Yasuda, M. (2000). Pathogenesis of retinoic-acid induced abnormal pad patterns on mouse volar skin. Teratology, 62, 181–188.PubMedCrossRefGoogle Scholar
  44. Müller, G. (1991). Evolutionary transformation of limb pattern: Heterochrony and secondary fusion. In J. R. Hinchliffe, J. Hurle, & D. Summerbell (Eds.), Developmental patterning of the vertebrate limb. New York: Plenum Press.Google Scholar
  45. Newman, S. A., & Müller, G. (2005). Origin and innovation in the vertebrate limb skeleton: An epigenetic perspective. Journal of Experimental Zoology B (Molecular Development & Evolution), 304B, 593–609.CrossRefGoogle Scholar
  46. Prabhakar, S., Visel, A., Akiyama, J., Shoukry, M., Lewis, K. D., Holt, A., et al. (2008). Human specific gain of function in a developmental enhancer. Science, 312, 1346–1350.CrossRefGoogle Scholar
  47. Reno, P., McCollum, M. A., Cohn, M. J., Meindl, R. S., Hamrick, M. W., & Lovejoy, C. O. (2008). Patterns of correlation and covariation of anthropoid distal forelimb segments correspond to Hoxd expression territories. Journal of Experimental Zoology B (Molecular & Developmental Evolution), 310B, 240–258.CrossRefGoogle Scholar
  48. Richardson, M. K. (1999). The developmental origins of adult variation. Bioessays, 21, 604–613.PubMedCrossRefGoogle Scholar
  49. Richardson, M., Gobes, S., van Leeuwen, A., Polman, J., Pieau, C., & Sanchez-Villagra, M. (2009). Heterochrony in limb evolution: Developmental mechanisms and natural selection. Journal of Experimental Zoology B (Molecular & Developmental Evolution), 312, 639–664.CrossRefGoogle Scholar
  50. Rolian, C., Lieberman, D., & Hallgrimsson, B. (2010). The co-evolution of human hands and feet. Evolution, 64, 1558–1568.PubMedCrossRefGoogle Scholar
  51. Sargis, E., Boyer, D., Bloch, J., & Silcox, M. (2007). Evolution of pedal grasping in Primates. Journal of Human Evolution, 53, 103–107.PubMedCrossRefGoogle Scholar
  52. Shapiro, M. D., Hanken, J., & Rosenthal, N. (2003). Developmental basis of evolutionary digit loss in the Australian lizard Hemiergis. Journal of Experimental Zoology B (Molecular & Developmental Evolution), 297B, 48–56.CrossRefGoogle Scholar
  53. Shapiro, M., Shubin, N., & Downs, J. (2007). Limb diversity and digit reduction in reptilian evolution. In B. K. Hall (Ed.), Fins into limbs. Chicago: University of Chicago Press.Google Scholar
  54. Shubin, N., & Alberch, P. (1986). A morphogenetic approach to the origin and basic organization of the tetrapod limb. Evolutionary Biology, 20, 319–387.CrossRefGoogle Scholar
  55. Springer, M., Murphy, W., Eizirik, E., & O’Brien, S. (2003). Placental mammal diversification and the Cretaceous-Tertiary boundary. Proceedings of the National Academy of Sciences USA, 100, 1056–1061.CrossRefGoogle Scholar
  56. Stern, D. L. (1998). The future of evolutionary biology. New Scientist, 159, 1–4.Google Scholar
  57. Stern, D. L. (2000). Evolutionary developmental biology and the problem of variation. Evolution, 54, 1079–1091.PubMedGoogle Scholar
  58. Tague, R. (2002). Variability of metapodials in primates with rudimentary digits: Ateles geoffroyi, Colobus guereza, and Perodicticus potto. American Journal of Physical Anthropology, 117, 195–208.PubMedCrossRefGoogle Scholar
  59. Thewissen, J., Cohn, M., Stevens, L., Bajpai, S., Heyning, J., & Horton, W. E., Jr. (2006). Developmental basis for hind-limb loss in dophins and origin of the cetacean bodyplan. Proceedings of the National Academy of Sciences USA, 103, 8414–8418.CrossRefGoogle Scholar
  60. Von Dassow, G., & Munro, E. (1999). Modularity in animal development and evolution: Elements of a conceptual framework for EvoDevo. Journal of Experimental Zoology B (Molecular & Developmental Evolution), 285, 307–325.CrossRefGoogle Scholar
  61. Wagner, G., & Vargas, A. O. (2008). On the nature of thumbs. Genome Biology, 9, 213.PubMedCrossRefGoogle Scholar
  62. Woodman, N., & Morgan, J. P. (2005). Skeletal morphology of the forefoot in shrews (Mammalia: Soricidae) of the genus Cryptotis, as revealed by digital X-rays. Journal of Morphology, 266, 60–73.PubMedCrossRefGoogle Scholar
  63. Zhu, J., Zhang, Y.-T., Alber, M., & Newman, S. (2010). Bare bones pattern formation: A core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PLoS One, 5, e10892.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Cellular Biology and AnatomyGeorgia Health Sciences UniversityAugustaUSA
  2. 2.Institute of Molecular Medicine and GeneticsGeorgia Health Sciences UniversityAugustaUSA
  3. 3.Department of Orthopaedic SurgeryGeorgia Health Sciences UniversityAugustaUSA

Personalised recommendations