Evolutionary Biology

, Volume 39, Issue 3, pp 324–340 | Cite as

Diversity and Evolution of Body Size in Fishes

  • James S. AlbertEmail author
  • Derek M. Johnson
Research Article


The diversity of body sizes observed among species of a clade is a combined result of microevolutionary processes (i.e. natural selection and genetic drift) that cause size changes within phylogenetic lineages, and macroevolutionary processes (i.e. speciation and extinction) that affect net rates of diversification among lineages. Here we assess trends of size diversity and evolution in fishes (non-tetrapod craniates), employing paleontological, macroecological, and phylogenetic information. Fishes are well suited to studies of size diversity and evolution, as they are highly diverse, representing more than 50% of all living vertebrate species, and many fish taxa are well represented in the fossil record from throughout the Phanerozoic. Further, the frequency distributions of sizes among fish lineages resemble those of most other animal taxa, in being right-skewed, even on a log scale. Using an approach that measures rates of size evolution (in darwins) within a formal phylogenetic framework, we interpret the shape of size distributions as a balance between the competing forces of diversification, pushing taxa away from ancestral values, and of conservation, drawing taxa closer to a central tendency. Within this context we show how non-directional mechanisms of evolution (i.e. passive diffusion processes) can produce an hitherto unperceived bias to larger size, when size is measured on the conventional log scale. These results demonstrate how the interpretation of macroecological datasets can be enriched from an historical perspective, and document the ways in which macroevolutionary and microevolutionary processes may be decoupled in the production of size diversity.


Allometry Cope’s rule Darwins Character evolution Evolutionary rates Macroecology Macroevolution Metabolic theory Paleontology Skewness 



We thank S. Albert, G. Arratia, S. Duke-Sylvester, J. Eisenberg, W. Eschmeyer, W. Fink, D. Goldstein, G. Hanke, P. Janvier, D. Julian, J. Knouft, H. Lillywhite, B. McNab, B. Moon, J. Neigel, J. Nelson, L. Page, D. Pollock, G. Smith, E. Wiley and M. Zelditch for discussions and access to specimens, and J. Brown and J. Gillooly for comments on a previous draft of the manuscript. JSA acknowledges support from U. S. National Science Foundation grants DEB 0741450, 0614334, 0215388.


  1. Ackerly, D. D. (2000). Taxon sampling, correlated evolution, and independent contrasts. Evolution, 54(5), 1480–1492.PubMedGoogle Scholar
  2. Albert, J. S. (2006). Phylogenetic character reconstruction. In J. H. Kaas (Ed.), Evolution of nervous systems volume 1: History of ideas, basic concepts, and developmental mechanisms (pp. p41–p54). Oxford: Academic Press.Google Scholar
  3. Albert, J. S., Bart, H. J., & Reis, R. E. (2011a). Species richness and cladal diversity. In J. S. Albert & R. E. Reis (Eds.), Historical biogeography of neotropical freshwater fishes (pp. 89–104). Berkeley: University of California Press.CrossRefGoogle Scholar
  4. Albert, J. S., Knouft, J. H., & Johnson, D. M. (2009). Fossils provide better estimates of ancestral body size than do extant taxa in fishes. Acta Zoologica, 90(Suppl. 1), 308–335.Google Scholar
  5. Albert, J. S., Petry, P., & Reis, R. E. (2011b). Major biogeographic and phylogenetic patterns. In J. S. Albert & R. E. Reis (Eds.), Historical biogeography of neotropical freshwater fishes (pp. p21–p57). Berkeley: University of California Press.CrossRefGoogle Scholar
  6. Allen, A. P., & Gillooly, J. F. (2007). The mechanistic basis of the metabolic theory of ecology. Oikos, 116(6), 1073–1077.CrossRefGoogle Scholar
  7. Allen, A. P., Gillooly, J. F., & Brown, J. H. (2005). Linking the global carbon cycle to individual metabolism. Functional Ecology, 19(2), 202–213.CrossRefGoogle Scholar
  8. Alroy, J. (1998). Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science, 280(5364), 731–734.PubMedCrossRefGoogle Scholar
  9. Alroy, J. (2010). Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology, 53, 1211–1235.CrossRefGoogle Scholar
  10. Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fursich, F. T., et al. (2001). Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences of the United States of America, 98(11), 6261–6266.PubMedCrossRefGoogle Scholar
  11. Arnold, A. J., Kelly, D. C., & Parker, W. C. (1995). Causality and cope rule—evidence from the planktonic- foraminifera. Journal of Paleontology, 69(2), 203–210.Google Scholar
  12. Arratia, G. (1997). Basal teleosts and teleostean phylogeny. Palaeo Ichthyologica, 7, 1–168.Google Scholar
  13. Arratia, G. (1999). The monophyly of the Teleostei and stem-group teleosts. In G. Arratia & H.-P. Schultz (Eds.), Mesozoic fishes 2—Systematics and fossil record (pp. 265–334). Munchen: Verlag Dr. Friedrich Pfeil.Google Scholar
  14. Arratia, G. (2004). Mesozoic halecostomes and the early radiation of teleosts. In G. Arratia & A. Tintori (Eds.), Mesozoic fishes 3–systematics, paleoenvironments and biodiversity (pp. 279–315). München: Verlag Dr. Friedrich Pfeil.Google Scholar
  15. Arratia, G., & Cloutier, R. (2002). Cheirolepiform fish from the Devonian of Red Hill, Nevada. Journal of Vertebrate Paleontology, 22(3), 33A.Google Scholar
  16. Arratia, G., & Cloutier, R. (2004). A new cheirolepidid fish from the middle-upper Devonian of Red Hill, Nevada, USA. In G. Arratia, M. V. H. Wilson, & R. Cloutier (Eds.), Recent advances in the origin and early radiation of vertebrates (pp. 583–598). München: Verlag Dr. Friedrich Pfeil.Google Scholar
  17. Benton, M. J. (1993). The fossil record 2 (845 p). London: Chapman and Hall.Google Scholar
  18. Benton, M. J. (2005). Vertebrate palaeontology (472 p). Oxford: Blackwell.Google Scholar
  19. Benton, M. J., & Donoghue, P. C. J. (2007). Paleontological evidence to date the tree of life. Molecular Biology and Evolution, 24(1), 26–53.PubMedCrossRefGoogle Scholar
  20. Blanckenhorn, W. U. (2000). The evolution of body size: what keeps organisms small? Quarterly Review of Biology, 75, 385–407.PubMedCrossRefGoogle Scholar
  21. Blieck, A., & Turner, S. (2003). Global Ordovician vertebrate biogeography. Paleogeography, Paleoclimatology, and Paleoecology, 195, 37–54.CrossRefGoogle Scholar
  22. Blieck, A., Turner, S., Burrow, C. J., Schultze, H.-P., Rexroad, C. B., Bultynck, P., & Nowlan, G. S. (2010). Fossils, histology, and phylogeny: Why conodonts are not vertebrates. Episodes, 33, 234–241.Google Scholar
  23. Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57(4), 717–745.PubMedGoogle Scholar
  24. Brown, J. H., Allen, A. P., & Gillooly, J. F. (2007). The metabolic theory of ecology and the role of body size in marine and freshwater ecosystems. In A. Hildrew, D. Raffaelli, & R. Edmonds-Brown (Eds.), Body size: The structure and function of aquatic ecosystems (pp. 1–15). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85(7), 1771–1789.CrossRefGoogle Scholar
  26. Brown, J. H., Marquet, P. A., & Taper, M. L. (1993). Evolution of body-size—Consequences of an energetic definition of fitness. American Naturalist, 142(4), 573–584.PubMedCrossRefGoogle Scholar
  27. Brown, J. H., & Maurer, B. A. (1986). Body size, ecological dominance and Cope’s rule. Nature, 324(6094), 248–250.CrossRefGoogle Scholar
  28. Brown, J. H., & Sibly, R. M. (2006). Metabolic rate constrains the scaling of production with body mass. Proceedings of the National Academy of Sciences of the United States of America, 103(47), 17595–17599.PubMedCrossRefGoogle Scholar
  29. Butler, M. A., & Losos, J. B. (1997). Testing for unequal amounts of evolution in a continuous character on different branches of a phylogenetic tree using linear and squared-change parsimony: An example using lesser antillean Anolis lizards. Evolution, 51(5), 1623–1635.CrossRefGoogle Scholar
  30. Capellini, I., Venditti, C., & Barton, R. A. (2010). Phylogeny and metabolic scaling in mammals. Ecology, 91(9), 2783–2793.PubMedCrossRefGoogle Scholar
  31. Cappetta, H. (1987). Chondrichthyes II: Mesozoic and Cenozoic elasmobranchii (193 p). Stuttgart and New York: Gustav Fischer Verlag.Google Scholar
  32. Cassemiro, F. A. S., & Diniz, J. A. F. (2010). Deviations from predictions of the metabolic theory of ecology can be explained by violations of assumptions. Ecology, 91(12), 3729–3738.PubMedCrossRefGoogle Scholar
  33. Clarke, A., & Johnson, N. M. (1999). Scaling of metabolic rate with body mass and temperature in teleost fish. Journal Animal Ecology, 68, 893–905.CrossRefGoogle Scholar
  34. Clauset, A., & Erwin, D. H. (2008). The evolution and distribution of species body size. Science, 321(5887), 399–401.PubMedCrossRefGoogle Scholar
  35. Clauset, A., Schwab, D. J., & Redner, S. (2009). How many species have mass M? American Naturalist, 173, 256–263.PubMedCrossRefGoogle Scholar
  36. Clouthier, R. (1996). The primitive actinistian Miguashaia bureaui Schultze (Sarcopterygii). In H. P. Schultze & R. Clouthier (Eds.), Devonian fishes and plants of miguasha, Quebec, Canada (pp. 227–247). München: Verlag Dr. Friedrich Pfeil.Google Scholar
  37. Clouthier, R. (1997). Morphologie et variations du toit crânien du Dipneuste Scaumenacia curta (Whiteaves) (Sarcopterygii), du Dévonien supérieur du Québec. Geodiversitas, 19, 59–105.Google Scholar
  38. Clouthier, R., & Ahlberg, P. E. (1996). Morphology, characters, and the interrelationships of basal sarcopterygians. In M. L. Stiassny, L. R. Parenti, & G. D. Johnson (Eds.), Interrelationships of Fishes (pp. 445–479). San Diego: Academic Press.CrossRefGoogle Scholar
  39. Clouthier, R., & Forey, P. L. (1991). Diversity of extinct and living actinistian fishes (Sarcopterygii). Environmental Biology of Fishes, 32, 59–74.CrossRefGoogle Scholar
  40. Clyde, W. C., & Gingerich, P. D. (1994). Rates of evolution in the dentition of early eocene Cantius—Comparison of size and shape. Paleobiology, 20(4), 506–522.Google Scholar
  41. Coates, M. I. (1998). Actinopterygians from the Namurian of Bearsden, Scotland, with comments on early actinopterygian neurocrania. Zoological Journal of Linnean Society, 122(1), 27–59.CrossRefGoogle Scholar
  42. Cope, E. D. (1877). A contribution to the knowledge of the ichthyological fauna of the Green River shales. Bulletin of United States Geological and Geographical Survey, 3(34), 807–819.Google Scholar
  43. Damuth, J. (1993). Copes rule, the Island rule and the scaling of mammalian population-density. Nature, 365(6448), 748–750.PubMedCrossRefGoogle Scholar
  44. Darveau, C. A., Suarez, R. K., Andrews, R. D., & Hochachka, P. W. (2002). Allometric cascade as a unifying principle of body mass effects on metabolism. Nature, 417(6885), 166–170.PubMedCrossRefGoogle Scholar
  45. de Pinna, M. C. C. (1996). Teleostean monophyly. In M. L. J. Stiassny, L. R. Parenti, & G. D. Johnson (Eds.), Interrelationships of Fishes (pp. 147–162). New York: Academic Press.CrossRefGoogle Scholar
  46. Dehaene, S. (2011). The number sense: How the mind creates mathematics. New York: Oxford University Press.Google Scholar
  47. Dehaene, S., Izard, V., Spelke, E., & Pica, P. (2008). Log or linear? Distinct intuitions of the number scale in Western and amazonian indigene cultures. Science, 320, 1217–1220.PubMedCrossRefGoogle Scholar
  48. Demetrius, L. (1997). Directionality principles in thermodynamics and evolution. Proceedings of the National Academy of Sciences of the United States of America, 94(8), 3491–3498.PubMedCrossRefGoogle Scholar
  49. Demetrius, L. (2000). Directionality theory and the evolution of body size. Proceedings of the Royal Society of London Series B-Biological Sciences, 267(1460), 2385–2391.CrossRefGoogle Scholar
  50. Dietze, K. (2000). A revision of paramblypterid and amplypterid actinopterygians from upper carboniferous-lower permian lacustrine deposits of central Europe. Palaeontology, 43(5), 927–966.CrossRefGoogle Scholar
  51. Dong, X. P., Donoghue, P. C. J., & Repetski, J. E. (2005). Basal tissue structure in the earliest euconodonts: Testing hypotheses of developmental plasticity in euconodont phylogeny. Palaeontology, 48, 411–421.CrossRefGoogle Scholar
  52. Donoghue, P. C. J., & Sansom, I. J. (2002). Origin and early evolution of vertebrate skeletonization. Microscopy Research and Technique, 59(5), 352–372.PubMedCrossRefGoogle Scholar
  53. Fenchel, T. (1993). There are more small than large species? Oikos, 68, 375–378.CrossRefGoogle Scholar
  54. Frickhinger, K. A. (1995). Fossil atlas fishes. Jeffies RPS, translator. Melle: Hans A Baensch. 1088 p.Google Scholar
  55. Friedman, M., & Blom, H. (2006). A new actinopterygian from the Famennian of east Greenland and the interrelationships of Devonian ray-finned fishes. Journal of Paleontology, 80(6),1186–1204.Google Scholar
  56. Froese, R., & Pauly, D. (2005). FishBase 2005: Concepts, design and data sources. Los Banos: ICLARM.Google Scholar
  57. Fu, C., Wu, J., Wang, X., Lei, G., & Chen, J. (2004). Patterns of diversity, altitudinal range and body size among freshwater fishes in the Yangtze River basin, China. Global Ecology and Biogeography, 13, 543–552.CrossRefGoogle Scholar
  58. Gardezi, T., & da Silva, J. (1999). Diversity in relation to body size in mammals: A comparative study. American Naturalist, 153(1), 110–123.CrossRefGoogle Scholar
  59. Garland, T., Harvey, P. H., & Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology, 41(1), 18–32.Google Scholar
  60. Gaston, K. J. (1998). Species-range size distributions: Products of speciation, extinction and transformation. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 353(1366), 219–230.CrossRefGoogle Scholar
  61. Gaston, K. J., & Blackburn, T. M. (1995). Birds, body size and the threat of extinction. Philosophical Transactions: Biological Sciences, 347(1320), 205–212.CrossRefGoogle Scholar
  62. Gaston, K. J., & Blackburn, T. M. (2000). Pattern and process in macroecology (377 p). Oxford: Blackwell Science Ltd.Google Scholar
  63. Gaston, K. J., Chown, S. L., Calosi, P., Bernardo, J., Bilton, D. T., Clarke, A., et al. (2009). Macrophysiology: A conceptual reunification. American Naturalist, 174(5), 595–612.PubMedCrossRefGoogle Scholar
  64. Gess, R. W., Coates, M. I., & Rubidge, B. S. (2006). A lamprey from the Devonian period of South Africa. Nature, 443(7114), 981–984.PubMedCrossRefGoogle Scholar
  65. Gillman, M. P. (2007). Evolutionary dynamics of vertebrate body mass range. Evolution, 61(3), 685–693.PubMedCrossRefGoogle Scholar
  66. Gillooly, J. F., Allen, A. P., West, G. B., & Brown, J. H. (2005). The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proceedings of the National Academy of Sciences of the United States of America, 102(11), 140–145.PubMedCrossRefGoogle Scholar
  67. Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science, 293(5538), 2248–2251.PubMedCrossRefGoogle Scholar
  68. Gillooly, J. F., Londono, G. A., & Allen, A. P. (2008). Energetic constraints on an early developmental stage: A comparative view. Biology Letters, 4(1), 123–126.PubMedCrossRefGoogle Scholar
  69. Gingerich, P. D. (1983). Rates of evolution: Effects of time and temporal scaling. Science, 222, 159–161.PubMedCrossRefGoogle Scholar
  70. Gingerich, P. D. (1993). Quantification and comparison of evolutionary rates. American Journal of Science, 293A, 453–478.CrossRefGoogle Scholar
  71. Glazier, D. S. (2005). Beyond the ‘3/4-power law’: variation in the intra- and interspecific scaling of metabolic rate in animals. Biological Reviews, 80(4), 611–662.PubMedCrossRefGoogle Scholar
  72. Glazier, D. S. (2006). The 3/4-power law is not universal: Evolution of isometric, ontogenetic metabolic scaling in pelagic animals. BioScience, 56(4), 325–332.CrossRefGoogle Scholar
  73. Glazier, D. S. (2008). Effects of metabolic level on the body size scaling of metabolic rate in birds and mammals. Proceedings of the Royal Society B-Biological Sciences, 275(1641), 1405–1410.CrossRefGoogle Scholar
  74. Glazier, D. S. (2009). Ontogenetic body-mass scaling of resting metabolic rate covaries with species-specific metabolic level and body size in spiders and snakes. Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology, 153(4), 403–407.CrossRefGoogle Scholar
  75. Glazier, D. S. (2010). A unifying explanation for diverse metabolic scaling in animals and plants. Biological Reviews, 85(1), 111–138.PubMedCrossRefGoogle Scholar
  76. Gould, S. J. (1984). Smooth curve of evolutionary rate: A psychological and mathematical artifact. Science, 226, 984–985.CrossRefGoogle Scholar
  77. Gradstein, F. M, Ogg, J. G., Smith, A. G., Agterberg, F. P., Bleeker, W., Cooper, R. A., et al. (2004). A geologic time scale (589 p). Cambridge: Cambridge University Press.Google Scholar
  78. Griffiths, D. (2006). Pattern and process in the ecological biogeography of European freshwater fish. Journal of Animal Ecology, 75(3), 734–751.PubMedCrossRefGoogle Scholar
  79. Griswold, C. E., Coddington, J. A., Hormiga, G., & Scharff, N. (1998). Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea). Zoological Journal Linnean Society, 123, 1–99.CrossRefGoogle Scholar
  80. Guthrie, R. D. (2003). Rapid body size decline in Alaskan Pleistocene horses before extinction. Nature, 426, 169–171.PubMedCrossRefGoogle Scholar
  81. Haldane, J. B. S. (1949). Suggestions as to quantitative measurement of rates of evolution. Evolution, 3(1), 51–56.PubMedCrossRefGoogle Scholar
  82. Hardman, M., & Hardman, L. M. (2008). The relative importance of body size and paleoclimatic change as explanatory variables influencing lineage diversification rate: An evolutionary analysis of bullhead catfishes (Siluriformes: Ictaluridae). Systematic Biology, 57, 116–130.PubMedCrossRefGoogle Scholar
  83. Haussler, D., O’Brien, S. J., Ryder, O. A., Barker, F. K., Clamp, M., Crawford, A. J., et al. (2009). Genome 10 K: A proposal to obtain whole-genome sequence for 10,000 vertebrate species. Journal of Heredity, 100(6), 659–674.CrossRefGoogle Scholar
  84. Hayami, I. (1978). Notes on the rates and patterns of size change in evolution paleobiology, 4(3), 252–260.Google Scholar
  85. Hone, D. W. E., & Benton, M. J. (2005). The evolution of large size: how does Cope’s Rule work? Trends in Ecology & Evolution, 20(1), 4–6.CrossRefGoogle Scholar
  86. Hurley, I. A., Mueller, R. L., Dunn, K. A., Schmidt, E. J., Friedman, M., Ho, R. K., et al. (2007). A new time-scale for ray-finned fish evolution. Proceedings of the Royal Society B, 274, 489–498.PubMedCrossRefGoogle Scholar
  87. Hutchinson, G. E., & Macarthur, R. H. (1959). A theoretical ecological model of size distributions among species of animals. American Naturalist, 93(869), 117–125.CrossRefGoogle Scholar
  88. Isaac, N. J. B., & Carbone, C. (2010). Why are metabolic scaling exponents so controversial? Quantifying variance and testing hypotheses. Ecology Letters, 13(6), 728–735.PubMedCrossRefGoogle Scholar
  89. Jablonski, D. (1997a). Body-size evolution in Cretaceous molluscs and the status of Cope’s rule. Nature, 385(6613), 250–252.CrossRefGoogle Scholar
  90. Jablonski, D. (1997b). Body-size evolution in Cretaceous molluscs and the status of Cope’s rule. Nature, 385, 250–252.CrossRefGoogle Scholar
  91. Jablonski, D., Roy, K., & Valentine, J. W. (2006). Out of the tropics: Evolutionary dynamics of the latitudinal diversity gradient. Science, 314(5796), 102–106.PubMedCrossRefGoogle Scholar
  92. Janvier, P. (1996). Early vertebrates (393 p). Oxford: Oxford University Press.Google Scholar
  93. Janvier, P. (2003). Vertebrate characters and the Cambrian vertebrates. Comptes Rendus Palevol, 2(6–7), 523–531.CrossRefGoogle Scholar
  94. Janvier, P., Desbiens, S., Willett, J. A., & Arsenault, M. (2006). Lamprey-like gills in a gnathostome-related Devonian jawless vertebrate. Nature, 440(7088), 1183–1185.PubMedCrossRefGoogle Scholar
  95. Janvier, P., & Lund, R. (1983). Hardistiella montanensis N. Gen. et sp. (Petromyzontida) from the Lower Carboniferous of Montana, with remarks on the affinities of the lampreys. Journal of Vertebrate Paleontology, 2, 407–413.CrossRefGoogle Scholar
  96. Johnson, G. D., & Patterson, C. (1996). Relationships of lower euteleostean fishes. In M. L. J. Stiassny, L. R. Parenti, & G. D. Johnson (Eds.), Interrelationships of Fishes (pp. 251–332). New York: Academic Press.CrossRefGoogle Scholar
  97. Julian, D., Crampton, W. G. R., Wohlgemuth, S. E., & Albert, J. S. (2003). Oxygen consumption in weakly electric Neotropical fishes. Oecologia, 137(4), 502–511.PubMedCrossRefGoogle Scholar
  98. Kaufmann, K. W. (1981). Fitting and using growth curves. Oecologia, 49(3), 293–299.CrossRefGoogle Scholar
  99. Kingsolver, J. G., & Pfennig, D. W. (2004). Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution, 58(7), 1608–1612.PubMedGoogle Scholar
  100. Kleiber, M. (1932). Body size and metabolism. Hilgardia, 6, 315–351.Google Scholar
  101. Kleiber, M. (1947). Body size and metabolic rate. Physiological Reviews, 27(4), 511–541.PubMedGoogle Scholar
  102. Knoll, A. H., & Bambach, R. K. (2000). Directionality in the history of life: Diffusion from the left wall or repeated scaling of the right? Paleobiology, 26(4), 1–14.CrossRefGoogle Scholar
  103. Knouft, J. H. (2003). Convergence, divergence, and the effect of congeners on body size ratios in stream fishes. Evolution, 57(10), 2374–2382.PubMedGoogle Scholar
  104. Knouft, J. H., & Page, L. M. (2003). The evolution of body size in extant groups of North American freshwater fishes: Speciation, size distributions, and Cope’s rule. American Naturalist, 161(3), 413–421.PubMedCrossRefGoogle Scholar
  105. Koch, P. L. (1986). Clinal geographic variation in mammals: Implications for the study of chronoclines. Paleobiology, 12, 269–281.Google Scholar
  106. Kochmer, J. P., & Wagner, R. H. (1988). Why are there so many kinds of passerine birds? Because they are small. A reply to Raikow. Systematic Zoology, 37, 68–69.Google Scholar
  107. Krausse, R. A. J., Stempien, J. A., Kowalewski, M., & Miller, A. I. (2007). Body size estimates from the literature: Utility and potential for macroevolutionary studies. Palaios, 22, 60–73.CrossRefGoogle Scholar
  108. Lane, A., Janis, C. M., & Sepkoski, J. J., Jr. (2005). Estimating paleodiversities: A test of the taxic and phylogenetic methods. Paleobiology, 31, 21–34.Google Scholar
  109. Laurin, M. (2004). The evolution of body size, Cope’s rule and the origin of amniotes. Systematic Biology, 53(4), 594–622.PubMedCrossRefGoogle Scholar
  110. Lima-Ribeiro, M. S., Vale Brito Rangel, T. F. L., Pinto, M. P., Moura I., Melo, T. L., & Terribile, L. C. (2010). Spatial patterns of viperid species richness in South America: Environmental temperature vs. biochemical kinetics. Acta Scientiarum Biological Sciences, 32(2), 153–158.Google Scholar
  111. Lindstedt, S. L., & Boyce, M. S. (1985). Seasonality, fasting endurance, and body size in mammals. The American Naturalist, 125(6), 873–878.CrossRefGoogle Scholar
  112. Long, J. A. (1995). The rise of fishes: 500 Million Years of Evolution (223 p). Baltimore & London: Johns Hopkins University Press.Google Scholar
  113. Lund, R. (2000). The new actinopterygian order Guildayichthyiformes from the lower carboniferous of Montana (USA). Geodiversitas, 22, 171–206.Google Scholar
  114. Maddison, W. P. (1991). Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Systematic Zoology, 40(3), 304–314.CrossRefGoogle Scholar
  115. Maddison, W. P., & Maddison, D. R. (2006). Mesquite: A modular system for evolutionary analysis. Version 1.11. p
  116. Madin, J. S., Alroy, J., Aberhan, M., Fursich, F. T., Kiessling, W., Kosnik, M. A., et al. (2006). Statistical independence of escalatory ecological trends in phanerozoic marine invertebrates. Science, 312(5775), 897–900.PubMedCrossRefGoogle Scholar
  117. Makarieva, A. M., Gorshkov, V. G., & Li, B. L. (2005). Gigantism, temperature and metabolic rate in terrestrial poikilotherms. Proceedings of the Royal Society B, 272, 2325–2328.PubMedCrossRefGoogle Scholar
  118. Mallatt, J., & Chen, J. Y. (2003). Fossil sister group of craniates: predicted and found. Journal of Morphology, 258, 1–31.PubMedCrossRefGoogle Scholar
  119. Matthews, W. J. (1998). Patterns in freshwater fish ecology (756 p). London: Chapman and Hall.Google Scholar
  120. Maurer, B. A. (1998). The evolution of body size in birds. I. Evidence for non-random diversification. Evolutionary Ecology, 12(8), 925–934.Google Scholar
  121. Maurer, B. A., Brown, J. H., Dayan, T., Enquist, B. J., Morgan Ernest, S. K., Hadly, E. A. et al. (2004). Similarities in body size distributions of small-bodied flying vertebrates. Evolutionary Ecology Research 6(6), 783–797.Google Scholar
  122. Maurer, B. A., Brown, J. H., & Rusler, R. D. (1992). The micro and macro in body size evolution. Evolution, 46(4), 939–953.CrossRefGoogle Scholar
  123. May, R. M. (1988). How many species are there on earth? Science, 241, 1441–1448.PubMedCrossRefGoogle Scholar
  124. McCain, C. M., & Sanders, N. J. (2010). Metabolic theory and elevational diversity of vertebrate ectotherms. Ecology, 91(2), 601–609.PubMedCrossRefGoogle Scholar
  125. McNab, B. K. (1990). The physiological significance of body size. In J. Damuth & B. J. MacFadden (Eds.), Body size in mammalian paleobiology (pp. 11–24). Cambridge: Cambridge University Press.Google Scholar
  126. McNab, B. K. (2002). Physiological ecology of vertebrates: A view from energetics (576 p). Ithaca: Cornell University Press.Google Scholar
  127. McShea, D. W. (1994). Mechanisms of large-scale evolutionary trends. Evolution, 48(6), 1747–1763.CrossRefGoogle Scholar
  128. Miller, A. I. (1997). Dissecting global diversity patterns: Examples from the Ordovician Radiation. Annual Review of Ecology and Systematics, 28, 85–104.PubMedCrossRefGoogle Scholar
  129. Miller, A. I. (1998). Biotic transitions in global marine diversity. Science, 1157, 281.Google Scholar
  130. Millien, V. (2006). Morphological evolution is accelerated among island mammals. PLoS Biology, 4(10), e321.PubMedCrossRefGoogle Scholar
  131. Monroe, M. J., & Bokma, F. (2009). Do speciation rates drive rates of body size evolution in mammals? American Naturalist, 174, 912–918.PubMedCrossRefGoogle Scholar
  132. Munday, P. L. (1998). The ecological implications of small body size among coral-reef fishes. Oceanography and Marine Biology: An Annual Review, 36, 373–411.Google Scholar
  133. Munday, P. L., & Jones, G. P. (1998). The ecological implications of small body size among coral-reef fishes. Oceanography and Marine Biology: An Annual Review, 36, 373–411.Google Scholar
  134. Near, T. J., Bolnick, D. I., & Wainwright, P. C. (2005). Fossil calibrations and molecular divergence time estimates in centrarchid fishes (Teleostei: Centrarchidae). Evolution, 59(8), 1768–1782.PubMedGoogle Scholar
  135. Newell, N. D. (1949). Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution, 3(2), 103–124.PubMedCrossRefGoogle Scholar
  136. Nilsson, G. E., & Östlund-Nilsson, S. (2008). Does size matter for hypoxia tolerance in fish? Biological Reviews, 83(2), 173–189.PubMedCrossRefGoogle Scholar
  137. Northcutt, R. G. (2005). The new head hypothesis revisited. Journal of Experimental Zoology Part B-Molecular and Developmental Evolution, 304B(4), 274–297.CrossRefGoogle Scholar
  138. Novack-Gottshall, P. M., & Lanier, N. A. (2008). Scale-dependence of Cope’s rule in body size evolution of Paleozoic brachiopods. Proceedings of the National Academy of Sciences of the United States of America, 105(14), 5430–5434.PubMedCrossRefGoogle Scholar
  139. Olden, J. D., Hogan, Z. S., & Zanden, M. J. V. (2007). Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world’s freshwater and marine fishes. Global Ecology and Biogeography, 16(6), 694–701.CrossRefGoogle Scholar
  140. Olson, V. A., Davies, R. G., Orme, C. D. L., Thomas, G. H., Meiri, S., Blackburn, T. M., et al. (2009). Global biogeography and ecology of body size in birds. Ecology Letters, 12(3), 249–259.PubMedCrossRefGoogle Scholar
  141. Pagel, M. (1999). The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Systematic Biology, 48(3), 612–622.CrossRefGoogle Scholar
  142. Pagel, M., Venditti, C., & Meade, A. (2006). Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science, 314(5796), 119–121.PubMedCrossRefGoogle Scholar
  143. Pérez-Claros, J. A., & Aledo, J. C. (2007). Comment on “Morphological evolution is accelerated among island mammals”. PLoS Biology, 5(7), 180.CrossRefGoogle Scholar
  144. Peters, S. E., & Foote, M. (2001). Biodiversity in the Phanerozoic: A reinterpretation. Paleobiology, 27(4), 583–601.CrossRefGoogle Scholar
  145. Polly, P. D. (1998). Cope's rule. Science, 282(5386), 50–51.PubMedCrossRefGoogle Scholar
  146. Polly, P. D. (2001). Paleontology and the comparative method: Ancestral node reconstructions versus observed node values. American Naturalist, 157(6), 596–609.PubMedCrossRefGoogle Scholar
  147. Poulin, R., & Morand, S. (1997). Parasite body size distributions: Interpreting patterns of skewness. International Journal for Parasitology, 27(8), 959–964.PubMedCrossRefGoogle Scholar
  148. Prendini, L. (2001). Species or supraspecific taxa as terminals in cladistic analysis? Groundplans versus exemplars revisited. Systematic Biology, 50(2), 290–300.PubMedCrossRefGoogle Scholar
  149. Preston, F. W. (1948). The commonness and the rarity of species. Ecology, 29, 254–283.CrossRefGoogle Scholar
  150. Purvis, A., Orme, C. D. L., & Dolphin, K. (2003). Why are most species small-bodied? A phylogenetic view. In T. M. Blackburn & K. J. Gaston (Eds.), Macroecology: Concepts and consequences (pp. 155–173). Oxford: Blackwell Science.Google Scholar
  151. Ramirez, L., Diniz-Filho, J. A. F., & Hawkins, B. A. (2008). Partitioning phylogenetic and adaptive components of the geographical body-size pattern of New World birds. Global Ecology and Biogeography, 17(1), 100–110.Google Scholar
  152. Reiss, J. O. (1989). The meaning of developmental time—A metric for comparative embryology. American Naturalist, 134(2), 170–189.CrossRefGoogle Scholar
  153. Reynolds, J. D., Webb, T. J., & Hawkins, L. A. (2005). Life history and ecological correlates of extinction risk in European freshwater fishes. Canadian Journal of Fisheries and Aquatic Sciences, 62(4), 854–862.CrossRefGoogle Scholar
  154. Reznick, D. N., Shaw, F. H., Rodd, F. H., & Shaw, R. G. (1997). Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science, 275(5308), 1934–1937.PubMedCrossRefGoogle Scholar
  155. Rolfe, D. F., & Brown, G. C. (1997). Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiological Reviews, 77(3), 731–758.PubMedGoogle Scholar
  156. Romanuk, T. N., Hayward, A., & Hutchings, J. A. (2011). Trophic level scales positively with body size in fishes. Global Ecology and Biogeography, 20(2), 231–240.CrossRefGoogle Scholar
  157. Roy, K., Jablonski, D., & Martien, K. K. (2000). Invariant size-frequency distributions along a latitudinal gradient in marine bivalves. Proceedings of the National Academy of Sciences of the United States of America, 97(24), 13150–13155.PubMedCrossRefGoogle Scholar
  158. Ruber, L., Kottelat, M., Tan, H., Ng, P., & Britz, R. (2007). Evolution of miniaturization and the phylogenetic position of Paedocypris, comprising the world’s smallest vertebrate. BMC Evolutionary Biology, 7(1), 38.PubMedCrossRefGoogle Scholar
  159. Rubner, M. (1883). Über den einfluss der körpergrösse auf stoff- und kraftwechsel. Zeitschrift fur Biologie, 19, 536–562.Google Scholar
  160. Ruel, J. J., & Ayres, M. P. (1999). Jensen’s inequality predicts effects of environmental variation. Trends in Ecology & Evolution, 14(9), 361–366.CrossRefGoogle Scholar
  161. Santini, F., Harmon, L. J., Carnevale, G., & Alfaro, M. E. (2009). Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evolutionary Biology, 9(194), 1–15.Google Scholar
  162. Schmidt-Nielsen, K. (1984). Scaling. Why is animal size so important? Cambridge: Cambridge University Press.Google Scholar
  163. Sepkoski, J. J. (1981). A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7, 36–53.Google Scholar
  164. Sepkoski, J. J. (2002). A compendium of fossil marine animal genera. Bulletins of American Paleontology, 363, 1–560.Google Scholar
  165. Sheets, H. D., & Mitchell, C. E. (2001). Uncorrelated change produces the apparent dependence of evolutionary rate on interval. Paleobiology, 27(3), 429–445.CrossRefGoogle Scholar
  166. Shu, D. G. (2003). A paleontological perspective of vertebrate origin. Chinese Science Bulletin, 48(8), 725–735.Google Scholar
  167. Shu, D. G., Morris, S. C., Han, J., Zhang, Z. F., Yasui, K., Janvier, P., et al. (2003). Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature, 421(6922), 526–529.PubMedCrossRefGoogle Scholar
  168. Smith, G. R. (1981). Late Cenozoic freshwater fishes of North America. Annual Review Ecology and Systematics, 12, 163–193.CrossRefGoogle Scholar
  169. Smith, G. R., Badgley, C., Eiting, T. P., & Larson, P. S. (2010). Species diversity gradients in relation to geological history in North American freshwater fishes. Evolutionary Ecology Research, 12, 693–726.Google Scholar
  170. Smith, K. F., & Brown, J. H. (2002). Patterns of diversity, depth range and body size among pelagic fishes along a gradient of depth. Global Ecology and Biogeography, 11(4), 313–322.CrossRefGoogle Scholar
  171. Stanley, S. M. (1973). An explanation for Cope’s Rule. Evolution, 27(1), 1–26.CrossRefGoogle Scholar
  172. Stanley, S. M. (1990). The general correlation between rate of speciation and rate of extinction: Fortuitous causal linkages. In: R. M. Ross & W. D. Allmon (Eds.), Causes of evolution: A paleontological perspective (p. 494). Chicago: Univesit of Chicago Press.Google Scholar
  173. Stanley, S. M. (1998). Macroevolution. Pattern and process (332 p). Baltimore: The Johns Hopkins University Press.Google Scholar
  174. Stebens, K. P. (1987). The ecology of indeterminate growth in animals. Annual Review of Ecology and Systematics, 18, 371–407.CrossRefGoogle Scholar
  175. Twitchett, R. J., Feinberg, J. M., O’Connor, D. D., Alvarez, W., & McCollum, L. B. (2005). Early Triassic ophiuroids: Their paleoecology, taphonomy, and distribution. Palaios, 20, 213–223.CrossRefGoogle Scholar
  176. Underwood, C. J. (2006). Diversification of the Neoselachii (Chondrichthyes) during the Jurassic and Cretaceous. Paleobiology, 32(2), 215–235.CrossRefGoogle Scholar
  177. Webster, A. J., Gittleman, J. L., & Purvis, A. (2004). The life history legacy of evolutionary body size change in carnivores. Journal of Evolutionary Biology, 17(2), 396–407.PubMedCrossRefGoogle Scholar
  178. Weitzman, S., & Vari, R. (1988a). Miniaturization in South American freshwater fishes; an overview and discussion. Proceedings of the Biological Society of Washington, 101, 444–465.Google Scholar
  179. Weitzman, S. H., & Vari, R. P. (1988b). Miniaturization in South American freshwater fishes; an overview and discussion. Proceedings of the Biological Society of Washington, 101(2), 444–465.Google Scholar
  180. West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276(5309), 122–126.PubMedCrossRefGoogle Scholar
  181. West, G. B., Savage, V. M., Gillooly, J., Enquist, B. J., Woodruff, W. H., & Brown, J. H. (2003). Why does metabolic rate scale with body size? Nature, 421(6924), 713.PubMedCrossRefGoogle Scholar
  182. Wiens, J. J. (2007). Global patterns of diversification and species richness in amphibians. American Naturalist, 170, S86–S106.PubMedCrossRefGoogle Scholar
  183. Wiens, J. J., & Donoghue, M. J. (2004). Historical biogeography, ecology and species richness. Trends in Ecology & Evolution, 19(12), 639–644.CrossRefGoogle Scholar
  184. Wiens, J. J., & Graham, C. H. (2005). Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics, 36, 519–539.CrossRefGoogle Scholar
  185. Wieser, W. (1995). Energetics of fish larvae, the smallest vertebrates. Acta Physiologica Scandinavica, 154(3), 279–290.PubMedCrossRefGoogle Scholar
  186. Wiley, E. O., & Johnson, G. D. (2010). A teleost classification based on monophyletic groups. In: J. S, Nelson, H.-P. Schultze, & M. V. H. Wilson (Eds.), Origin and phylogenetic interrelationships of teleosts (pp. 123–182). München Verlag Dr. Friedrich Pfeil.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Louisiana at LafayetteLafayetteUSA
  2. 2.Department of BiologyVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations