Evolutionary Biology

, Volume 39, Issue 1, pp 116–125

Hind Wing Shape Evolves Faster than Front Wing Shape in Calopteryx Damselflies

Research Article

Abstract

Wing shape has been shown in a variety of species to be influenced by natural and sexual selection. In damselflies, front- and hind wings can beat independently, and functional differentiation may occur. Males of Calopteryx damselflies show species-specific nuptial flights that differ in colour signalling with the hind wings. Therefore, hind wing shape and colour may evolve in concert to improve colour display, independent of the front wings. We predicted that male hind wing shape evolves faster than front wing shape, due to sexual selection. Females do not engage in sexual displays, so we predicted that females do not show differences in divergence between front- and hind wing shape. We analysed the non-allometric component of wing shape of five European Calopteryx taxa using geometric morphometrics. We found a higher evolutionary divergence of hind wing shape in both sexes. Indeed, we found no significant differences in rate of evolution between the sexes, despite clear sex-specific differences in wing shape. We suggest that evolution of hind wing shape in males is accelerated by sexual selection on pre-copulatory displays and that this acceleration is reflected in females due to genetic correlations that somehow link the rates of wing shape evolution in the two sexes, but not the wing shapes themselves.

Keywords

Evolutionary divergence Functional differentiation Geometric morphometrics Phylogeny Sexual selection 

Supplementary material

11692_2011_9145_MOESM1_ESM.doc (135 kb)
Supplementary material 1 (DOC 135 kb)

References

  1. Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: Ten years of progress following the revolution. The Italian Journal of Zoology, 71, 5–16.Google Scholar
  2. Anders, U., & Rüppell, G. (1997). Relationships of some European Calopteryx species suggested by time analysis of courtship flights. Entomologica Germanica, 21, 253–264.Google Scholar
  3. Anderson, C. N., & Grether, G. F. (2010). Interspecific aggression and character displacement of competitor recognition in Hetaerina damselflies. Proceedings of the Royal Society Series B, 277, 549–555.Google Scholar
  4. Arnqvist, G. (1998). Comparative evidence for the evolution of genitalia by sexual selection. Nature, 393, 784–786.Google Scholar
  5. Askew, R. R. (2004). The dragonflies of Europe revised edition. Colchester: Harley Books.Google Scholar
  6. Beldade, P., Koops, K., & Brakefield, P. M. (2002). Developmental constraints versus flexibility in morphological evolution. Nature, 416, 844–847.PubMedGoogle Scholar
  7. Berwaerts, K., Aerts, P., & Van Dyck, H. (2006). On the sex-specific mechanisms of butterfly flight: Flight performance relative to flight morphology, wing kinematics, and sex in Pararge aegeria. Biological Journal of the Linnean Society, 89, 675–687.Google Scholar
  8. Berwaerts, K., Van Dyck, H., & Aerts, P. (2002). Does flight morphology relate to flight performance? An experimental test with the butterfly Pararge aegeria. Functional Ecology, 16, 484–491.Google Scholar
  9. Betts, C. R., & Wootton, R. J. (1988). Wing shape and flight behaviour in butterflies (Lepidoptera: Papilionoidea and Hesperioidea): A preliminary analysis. Journal of Experimental Biology, 138, 271–288.Google Scholar
  10. Beukema, J. J. (2004). Recognition of conspecific females by males of Calopteryx haemorrhoidalis (Vander Linden) (Zygoptera: Calopterygidae). Odonatologica, 33, 147–156.Google Scholar
  11. Bonduriansky, R., & Rowe, L. (2005). Intralocus sexual conflict and the genetic architecture of sexually dimorphic traits in Prochyliza xanthostoma (Diptera: Piophilidae). Evolution, 59, 1965–1975.PubMedGoogle Scholar
  12. Bots, J., Breuker, C. J., Van Kerkhove, A., Van Dongen, S., De Bruyn, L., & Van Gossum, H. (2009). Variation in flight morphology in a female polymorphic damselfly: Intraspecific, intrasexual, and seasonal differences. Canadian Journal of Zoology, 87, 86–94.Google Scholar
  13. Bowlin, M. S., & Wikelski, M. (2008). Pointed wings, low wingloading and calm air reduce migratory flight costs in songbirds. PLoS ONE, 3, e2154.PubMedGoogle Scholar
  14. Breuker, C. J., Brakefield, P. M., & Gibbs, M. (2007). The association between wing morphology and dispersal is sex-specific in the glanville fritillary butterfly Melitaea cinxia (Lepidoptera: Nymphalidae). European Journal of Entomology, 104, 445–452.Google Scholar
  15. Bullen, R. D., & McKenzie, N. L. (2007). Bat wing airfoil and planform structures relating to aerodynamic cleanliness. The Australian Journal of Zoology, 55, 237–247.Google Scholar
  16. Calmaestra, R. G., & Moreno, E. (2001). A phylogenetically-based analysis on the relationship between wing morphology and migratory behaviour in Passeriformes. Ardea, 89, 407–416.Google Scholar
  17. Chaput-Bardy, A., Grégorie, A., Baguette, M., Pagano, A., & Secondi, J. (2010). Condition and phenotype-dependent dispersal in a damselfly, Calopteryx splendens. PLoS ONE, 5, e10694.PubMedGoogle Scholar
  18. Conrad, K. F., & Herman, T. B. (1987). Territorial and reproductive behaviour of Calopteryx aequabilis Say (Odonata: Calopterygidae) in Nova Scotia, Canada. Advances in Odonatology, 3, 41–50.Google Scholar
  19. Contreras-Garduño, J., Buzatto, B. A., Serrano-Meneses, M. A., Nájera-Cordero, K., & Córdoba-Aguilar, A. (2008). The size of the red wing spot of the American rubyspot as a heightened condition-dependent ornament. Behavioral Ecology, 19, 724–732.Google Scholar
  20. Córdoba-Aguilar, A. (2000). Reproductive behaviour of the territorial damselfly Calopteryx haemorrhoidalis asturica Ocharan (Zygoptera: Calopterygidae). Odonatologica, 29, 295–305.Google Scholar
  21. Córdoba-Aguilar, A. (2002). Wing pigmentation in territorial male damselflies, Calopteryx haemorrhoidalis: a possible relation to sexual selection. Animal Behaviour, 63, 759–766.Google Scholar
  22. Córdoba-Aguilar, A., & Cordero-Rivera, A. (2005). Evolution and ecology of Calopterygidae (Zygoptera: Odonata): Status of knowledge and research perspectives. Neotropical Entomology, 34, 861–879.Google Scholar
  23. Córdoba-Aguilar, A., Salamanca-Ocaña, J. C., & Lopezaraiza, M. (2003). Female reproductive decisions and parasite burden in a calopterygid damselfly (Insecta: Odonata). Animal Behaviour, 66, 81–87.Google Scholar
  24. Debat, V., Bégin, M., Legout, H., & David, J. R. (2003). Allometric and nonallometric components of Drosophila wing shape respond differently to developmental temperature. Evolution, 57, 2773–2784.PubMedGoogle Scholar
  25. DeVries, P. J., Penz, C. M., & Hill, R. I. (2010). Vertical distribution, flight behaviour and evolution of wing morphology in Morpho butterflies. Journal of Animal Ecology, 79, 1077–1085.PubMedGoogle Scholar
  26. Dockx, C. (2007). Directional and stabilizing selection on wing size and shape in migrant and resident monarch butterflies, Danaus plexippus (L.), in Cuba. Biological Journal of the Linnean Society, 92, 605–616.Google Scholar
  27. Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.PubMedGoogle Scholar
  28. Dumont, H. J., Vanfleteren, J. R., De Jonckheere, J. F., & Weekers, P. H. H. (2005). Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of Calopterygoid damselflies (Odonata, Zygoptera) inferred from ribosomal DNA sequences. Systematic Biology, 54, 347–362.PubMedGoogle Scholar
  29. Endler, J. A. (1992). Signals, signal conditions, and the direction of evolution. American Naturalist, 139, S125–S153.Google Scholar
  30. Eroukhmanoff, F., Outomuro, D., Ocharan, F. J., & Svensson, E. I. (2009). Patterns of phenotypic divergence in wing covariance structure of calopterygid damselflies. Evolutionary Biology, 36, 214–224.Google Scholar
  31. Fernández, G., & Lank, D. B. (2007). Variation in the wing morphology of western sandpipers (Calidris mauri) in relation to sex, age class, and annual cycle. Auk, 124, 1037–1046.Google Scholar
  32. Förschler, M. I., & Bairlein, F. (2011). Morphological shifts of the external flight apparatus across the range of a passerine (Northern wheatear) with diverging migratory behaviour. PLoS ONE, 6, e18732.PubMedGoogle Scholar
  33. Gibbons, D. W., & Pain, D. (1992). The influence of river flow rate on the breeding behaviour of Calopteryx damselflies. Journal of Animal Ecology, 61, 283–289.Google Scholar
  34. Grabow, K., & Rüppell, G. (1995). Wing loading in relation to size and flight characteristics of European Odonata. Odonatologica, 24, 175–186.Google Scholar
  35. Grether, G. F. (1996). Intrasexual competition alone favors a sexually dimorphic ornament in the rubyspot damselfly Hetaerina americana. Evolution, 50, 1949–1957.Google Scholar
  36. Grether, G. F., & Grey, R. M. (1996). Novel cost of a sexually selected trait in the rubyspot damselfly Hetaerina americana: conspicuousness to prey. Behavioral Ecology, 7, 465–473.Google Scholar
  37. Hedenström, A. (2002). Aerodynamics, evolution and ecology of avian flight. Trends in Ecology & Evolution, 17, 415–422.Google Scholar
  38. Hedenström, A., & Møller, A. P. (1992). Morphological adaptations to song flight in passerine birds: a comparative study. Proceedings of the Royal Society of London Series B, 247, 183–187.Google Scholar
  39. Heymer, A. (1972). Comportements social et territorial des Calopterygidae (Odon. Zygoptera). Annales de la Société Entomologique de France, 8, 3–53.Google Scholar
  40. Heymer, A. (1973). Étude du comportement reproducteur et analyse des mécanismes déclencheurs innés (MDI) optiques chez les Calopterygidae (Odon Zygoptera). Annales de la Société Entomologique de France, 9, 219–255.Google Scholar
  41. Hill, J. K., Thomas, C. D., & Blakeley, D. S. (1999). Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia, 121, 165–170.Google Scholar
  42. Johansson, F., Söderquist, M., & Bokma, F. (2009). Insect wing shape evolution: independent effects of migratory and mate guarding flight on dragonfly wings. Biological Journal of the Linnean Society, 97, 362–372.Google Scholar
  43. Kiauta, B. (1969). Sex chromosomes and sex determining mechanisms in Odonata, with a review of the cytological conditions in the family Gomphidae, and references to the karyotypic evolution in the order. Genetica, 40, 127–157.PubMedGoogle Scholar
  44. Lele, S., & Richtsmeier, J. T. (1991). Euclidean distance matrix: a coordinate-free approach for comparing biological shapes using landmark data. American Journal of Physical Anthropology, 86, 415–427.PubMedGoogle Scholar
  45. Maddison W, Maddison D. (2010). Mesquite Version 2.74. Available at: http://mesquiteproject.org/mesquite/mesquite.html.
  46. Marchetti, K., Price, T., & Richman, A. (1995). Correlates of wing morphology with foraging behaviour and migration distance in the genus Phylloscopus. Journal of Avian Biology, 26, 177–181.Google Scholar
  47. Meek, S. B., & Herman, T. B. (1990). A comparison of the reproductive behaviours of three Calopteryx species (Odonata: Calopterygidae) in Nova Scotia. Canadian Journal of Zoology, 68, 10–16.Google Scholar
  48. Misof, B., Anderson, C. L., & Hadrys, H. (2000). A phylogeny of the damselfly Genus Calopteryx (Odonata) using mitochondrial 16S rDNA markers. Molecular Phylogenetics and Evolution, 15, 5–14.PubMedGoogle Scholar
  49. Miyakawa, K. (1982). Reproductive behaviour and life span of adult Calopteryx atrata Selys and C virgo japonica Selys (Odonata: Zygoptera). Advances in Odonatology, 1, 193–203.Google Scholar
  50. Monteiro, A., Brakefield, P. M., & French, V. (1997). The relationship between eyespot shape and wing shape in the butterfly Bicyclus anynana: A genetic and morphometrical approach. Journal of Evolutionary Biology, 10, 787–802.Google Scholar
  51. Nijhout, H. F., Wray, G. A., & Gilbert, L. E. (1990). An analysis of the phenotypic effects of certain colour pattern genes in Heliconius (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society, 40, 357–372.Google Scholar
  52. Norberg, U. M. (1995). How a long tail and changes in mass and wing shape affect the cost for flight in animals. Functional Ecology, 9, 48–54.Google Scholar
  53. Norberg, U. M., & Rayner, J. M. V. (1987). Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical transactions of the Royal Society of London Series B, 316, 335–427.Google Scholar
  54. Oliver, J. C., Robertson, K. A., & Monteiro, A. (2009). Accommodating natural and sexual selection in butterfly wing pattern evolution. Proceedings of the Royal Society Series B, 276, 2369–2375.Google Scholar
  55. Outomuro, D., & Johansson, F. (2011). The effects of latitude, body size and sexual selection on wing shape in a damselfly. Biological Journal of the Linnean Society, 102, 263–274.Google Scholar
  56. Pajunen, V. I. (1966). Aggressive behaviour and territoriality in a population of Calopteryx virgo L. (Odon., Calopterygidae). Annales Zoologici Fennici, 3, 201–214.Google Scholar
  57. Poissant, J., Wilson, A. J., & Coltman, D. W. (2009). Sex-specific genetic variance and the evolution of sexual dimorphism: a systematic review of cross-sex genetic correlations. Evolution, 64, 97–107.PubMedGoogle Scholar
  58. Potti, J., & Canal, D. (2011). Heritability and genetic correlation between the sexes in a songbird sexual ornament. Heredity, 106, 945–954.PubMedGoogle Scholar
  59. Rantala, M. J., Koskimäki, J., Taskinen, J., Tynkkynen, K., & Suhonen, J. (2000). Immunocompetence, developmental stability and wingspot size in the damselfly Calopteryx splendens L. Proceedings of the Royal Society of London Series B, 267, 2453–2457.PubMedGoogle Scholar
  60. Reels, G. (2008). The phoenix damselfly (Pseudolestes mirabilis) of Hainan Island, China. Agrion, 12, 44–45.Google Scholar
  61. Robert, P.-A. (1958). Les libellules (Odonates). Neuchâtel: Delachaux et Niestlé.Google Scholar
  62. Rohlf F. J. (2004). TpsSplin, Version 1.20. Available at: http://life.bio.sunysb.edu/morph/.
  63. Rohlf F. J. (2007). TpsTree, Version 1.21. Available at: http://life.bio.sunysb.edu/morph/.
  64. Rohlf F. J. (2008). TpsRelw, Version 1.46. Available at: http://life.bio.sunysb.edu/morph/.
  65. Rohlf F. J. (2009). TpsDig2, Version 2.14. Available at: http://life.bio.sunysb.edu/morph/.
  66. Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39, 40–59.Google Scholar
  67. Rüppell, G. (1989). Kinematic analysis of symmetrical flight manoeuvres of Odonata. Journal of Experimental Biology, 144, 13–42.Google Scholar
  68. Rüppell, G., Hilfert-Rüppell, D., Rehfeldt, G., & Schütte, C. (2005). Die Prachtlibellen Europas. Gattung Calopteryx. Hohenwarsleben: Westarp Wissenschaften.Google Scholar
  69. Rutowski, R. L., Nahm, A. C., & Macedonia, J. M. (2010). Iridescent hindwing patches in the Pipevine Swallowtail: differences in dorsal and ventral surfaces relate to signal function and context. Functional Ecology, 24, 767–775.Google Scholar
  70. Santolamazza, S., Baquero, E., & Cordero-Rivera, A. (2011). Incidence of Anagrus obscurus (Hymenoptera: Mymaridae) egg parasitism on Calopteryx haemorrhoidalis and Platycnemis pennipes (Odonata: Calopterygidae: Platycnemididae) in Italy. Entomological Science, 14, 366–369.Google Scholar
  71. Shingleton, A. W., Frankino, W. A., Flatt, T., Nijhout, H. F., & Emlen, D. J. (2007). Size and shape: The developmental regulation of static allometry in insects. Bioessays, 29, 536–548.PubMedGoogle Scholar
  72. Siva-Jothy, M. T. (1999). Male wing pigmentation may affect reproductive success via female choice in a calopterygid damselfly (Zygoptera). Behaviour, 136, 1365–1377.Google Scholar
  73. Siva-Jothy, M. T. (2000). A mechanistic link between parasite resistance and expression of a sexually selected trait in a damselfly. Proceedings of the Royal Society of London Series B, 267, 2523–2527.PubMedGoogle Scholar
  74. Siva-Jothy, M. T., Gibbons, D. W., & Pain, D. (1995). Female oviposition-site preference and egg hatching success in the damselfly Calopteryx splendens xanthostoma. Behavioral Ecology and Sociobiology, 37, 39–44.Google Scholar
  75. Siva-Jothy, M. T., & Plaistow, S. J. (1999). A fitness cost of eugregarine parasitism in a damselfly. Ecological Entomology, 24, 465–470.Google Scholar
  76. Srygley, R. B. (1994). Locomotor mimicry in butterflies? The associations of positions of centres of mass among groups of mimetic, unprofitable prey. Philosophical transactions of the Royal Society of London B, 343, 145–155.Google Scholar
  77. Srygley, R. B. (1999). Locomotor mimicry in Heliconius butterflies: contrast analyses of flight morphology and kinematics. Philosophical transactions of the Royal Society of London B, 354, 203–214.Google Scholar
  78. Stiles, F. G., Altshuler, D. L., & Dudley, R. (2005). Wing morphology and flight behaviour of some North American hummingbird species. Auk, 122, 872–886.Google Scholar
  79. Svensson, E. I., Eroukhmanoff, F., & Friberg, M. (2006). Effects of natural and sexual selection on adaptive population divergence and premating isolation in a damselfly. Evolution, 60, 1242–1253.PubMedGoogle Scholar
  80. Svensson, E. I., & Friberg, M. (2007). Selective predation on wing morphology in sympatric damselflies. American Naturalist, 170, 101–112.PubMedGoogle Scholar
  81. Svensson, E. I., Karlsson, K., Friberg, M., & Eroukhmanoff, F. (2007). Gender differences in species recognition and the evolution of asymmetric sexual isolation. Current Biology, 17, 1943–1947.PubMedGoogle Scholar
  82. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.PubMedGoogle Scholar
  83. Taylor, G. K. (2001). Mechanics and aerodynamics of insect flight control. Biological Review, 76, 449–471.Google Scholar
  84. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.PubMedGoogle Scholar
  85. Tynkkynen, K., Rantala, M. J., & Suhonen, J. (2004). Interspecific aggression and character displacement in the damselfly Calopteryx splendens. Journal of Evolutionary Biology, 17, 759–767.PubMedGoogle Scholar
  86. Voelker, G. (2001). Morphological correlates of migratory distance and flight display in the avian genus Anthus. Biological Journal of the Linnean Society, 73, 425–435.Google Scholar
  87. Vukusic, P., Wooton, R. J., & Sambles, J. R. (2004). Remarkable iridescence in the hindwings of the damselfly Neurobasis chinensis chinensis (Linnaeus) (Zygoptera: Calopterygidae). Proceedings of the Royal Society of London B, 271, 595–601.Google Scholar
  88. Waage, J. K. (1973). Reproductive behavior and its relation to territoriality in Calopteryx maculata (Beauvois) (Odonata: Calopterygidae). Behaviour, 47, 240–256.Google Scholar
  89. Waage, J. K. (1975). Reproductive isolation and the potential for character displacement in the damselflies, Calopteryx maculata and C. aequabilis (Odonata: Calopterygidae). Systematic Zoology, 24, 24–36.Google Scholar
  90. Waage, J. K. (1988). Reproductive behaviour of the damselfly Calopteryx dimidiata Burmeister (Zygoptera: Calopterygidae). Odonatologica, 17, 365–378.Google Scholar
  91. Weekers, P. H. H., De Jonckheere, J. F., & Dumont, H. J. (2001). Phylogenetic relationships inferred from ribosomal ITS sequences and biogeographic patterns in representatives of the genus Calopteryx (Insecta: Odonata) of the West Mediterranean and adjacent West European zone. Molecular Phylogenetics and Evolution, 20, 89–99.PubMedGoogle Scholar
  92. Wellenreuther, M., Tynkkynen, K., & Svensson, E. I. (2010). Simulating range expansion: male species recognition and loss of premating isolation in damselflies. Evolution, 64, 242–252.PubMedGoogle Scholar
  93. Wootton, R. J. (1992). Functional morphology of insect wings. Annual Review of Entomology, 37, 113–140.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • David Outomuro
    • 1
  • Folmer Bokma
    • 2
  • Frank Johansson
    • 2
    • 3
  1. 1.Departamento de Biología de Organismos y SistemasUniversity of OviedoOviedoSpain
  2. 2.Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
  3. 3.Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden

Personalised recommendations