Evolutionary Biology

, Volume 38, Issue 3, pp 306–315

Hybridization Promotes Evolvability in African Cichlids: Connections Between Transgressive Segregation and Phenotypic Integration

  • Kevin J. Parsons
  • Young H. Son
  • R. Craig Albertson
Research Article

Abstract

Hybridization is a potential source of novel variation through (1) transgressive segregation, and (2) changes in the patterns and strength of phenotypic integration. We investigated the capacity of hybridization to generate novel phenotypic variation in African cichlids by examining a large F2 population generated by hybridizing two Lake Malawi cichlid species with differently shaped heads. Our morphometric analysis focused on the lateral and ventral views of the head. While the lateral view exhibited marked transgressive segregation, the ventral view showed a limited ability for transgression, indicating a difference in the genetic architecture and selective history between alternate views of the head. Moreover, hybrids showed a marked reduction in integration, with a lower degree of integration observed in transgressive individuals. In all, these data offer novel insights into how hybridization can promote evolvability, and provide a possible explanation for how broad phenotypic diversity may be achieved in rapidly evolving groups.

Keywords

Adaptive radiation Variation Constraint 

References

  1. Ackermann, R. R., Rogers, J., & Cheverud, J. M. (2005). What it means morphologically to be a hybrid: Evidence from known-pedigree baboons. American Journal of Physical Anthropology, (Supp) 40, 65.Google Scholar
  2. Ackermann, R., Rogers, J., & Cheverud, J. (2006). Identifying the morphological signatures of hybridization in primate and human evolution. Journal of Human Evolution, 51, 632–645.PubMedCrossRefGoogle Scholar
  3. Albertson, R. C. (2008). Morphological divergence predicts habitat partitioning in a Lake Malawi cichlid species complex. Copeia, 2008, 690–699.CrossRefGoogle Scholar
  4. Albertson, R. C., & Kocher, T. D. (2005). Genetic architecture sets limits on transgressive segregation in hybrid cichlid fishes. Evolution, 59, 686–690.PubMedCrossRefGoogle Scholar
  5. Albertson, R. C., Streelman, J. T., & Kocher, T. D. (2003). Directional selection has shaped the oral jaw apparatus of Lake Malawi cichlid fishes. Proceeding of the National Academy of Sciences USA, 100, 5252–5257.CrossRefGoogle Scholar
  6. Anderson, D. W., & Evans, B. J. (2009). Regulatory evolution of a duplicated heterodimer across species and tissues of allopolyploid clawed frogs (Xenopus). Journal of Molecular Evolution, 68, 236–247.PubMedCrossRefGoogle Scholar
  7. Armbruster, W. S., Pelabon, C., Hansen, T. F., & Mulder, C. P. H. (2004). Floral integration, modularity, and accuracy: Distinguishing complex adaptations from genetic constraints. In M. Pigliucci & K. A. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 23–49). Oxford: Oxford University Press.Google Scholar
  8. Berg, R. L. (1960). The ecological significance of correlation pleiades. Evolution, 14, 171–180.Google Scholar
  9. Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge: Cambridge University Press.Google Scholar
  10. Bullini, L., & Nascetti, G. (1990). Speciation by hybridization in phasmids and other insects. Canadian Journal of Zoology, 68, 1747–1760.CrossRefGoogle Scholar
  11. Cheverud, J. (1988). A comparison of genetic and phenotypic correlations. Evolution, 42, 958–968.CrossRefGoogle Scholar
  12. Cheverud, J. (2004). Modular pleiotropic effects of quantitative trait loci on morphological traits. In G. Schlosser & G. Wagner (Eds.), Modularity in development and evolution (pp. 132–153). Chicago: University of Chicago Press.Google Scholar
  13. Cheverud, J. M., Wagner, G. P., & Dow, M. M. (1989). Methods for the comparative analysis of variation patterns. Systematic Zoology, 38, 201–213.CrossRefGoogle Scholar
  14. Clausen, J., & Heisey, W. M. (1960). The balance between coherence and variation in evolution. Proceedings of the National Academy of Sciences, 46, 494–506.CrossRefGoogle Scholar
  15. Cohen, A. S., Stone, J. R., Beuning, K. R. M., Park, L. E., Reinthal, P. N., Dettman, D., et al. (2007). Ecological consequences of early Late Pleistocene megadroughts in tropical Africa. Proceedings of the National Academy of Sciences USA, 104, 16422–16427.CrossRefGoogle Scholar
  16. Conner, J. K. (2002). Genetic mechanisms of floral trait correlations in a natural population. Nature, 420, 407–410.PubMedCrossRefGoogle Scholar
  17. Cooper, W. J., Parsons, K., McIntyre, A., Kern, B., McGee-Moore, A., & Albertson, R. C. (2010). Bentho—Pelagic divergence of cichlid feeding architecture was prodigious and consistent during multiple adaptive radiations within African rift-lakes. PLoS ONE, 5, e9551.PubMedCrossRefGoogle Scholar
  18. Cooper, W. J., & Westneat, M. W. (2009). Form and function of damselfish skulls: Rapid and repeated evolution into a limited number of trophic niches. BMC Evolutionary Biology, 9, 24.PubMedCrossRefGoogle Scholar
  19. Danley, P. D., & Kocher, T. D. (2001). Speciation in rapidly diverging systems: Lessons from Lake Malawi. Molecular Ecology, 10, 1075–1086.PubMedCrossRefGoogle Scholar
  20. Dobzhansky, T. (1940). Speciation as a stage in evolutionary divergence. American Naturalist, 74, 312–321.CrossRefGoogle Scholar
  21. Ehrlich, P. R., & Wilson, E. O. (1991). Biodiversity studies: Science and policy. Science, 253, 758–762.PubMedCrossRefGoogle Scholar
  22. Futuyma, D. J. (2010). Evolutionary constraint and ecological consequences. Evolution, 64, 1865–1884.PubMedCrossRefGoogle Scholar
  23. Genner, M. J., Knight, M. E., Haesler, M. P., & Turner, G. F. (2010). Establishment and expansion 25 of Lake Malawi rock fish populations after a dramatic Late Pleistocene lake level rise. Molecular Ecology, 19, 170–182.PubMedCrossRefGoogle Scholar
  24. Gilliard, E. T. (1959). The ecology of hybridization in New Guinea Honeyeaters (Aves). American Museum Novitates, 1937, 1–26.Google Scholar
  25. Grant, B. R., & Grant, P. R. (1979). Darwin’s Finches: population variation and sympatric speciation. Proceedings of the National Academy of Sciences USA, 76, 2359–2363.CrossRefGoogle Scholar
  26. Grant, P. R., & Grant, B. R. (1992). Hybridization in bird species. Science, 256, 193–197.PubMedCrossRefGoogle Scholar
  27. Grant, P. R., & Grant, B. R. (1994). Phenotypic and genetic effects of hybridization in Darwin’s finches. Evolution, 48, 297–316.CrossRefGoogle Scholar
  28. Hallgrimsson, B., Jamniczky, H., Young, N. M., Rolian, C., Parsons, T. E., Boughner, J. C., et al. (2009). Deciphering the palimpsest: Studying the relationship between morphological integration and phenotypic covariation. Evolutionary Biology, 36, 355–376.CrossRefGoogle Scholar
  29. Herrera, C. M., Cerda, X., Garcia, M. B., Guitian, J., Medrano, M., Rey, P. J., et al. (2002). Floral integration, phenotypic covariance structure and pollinator variation in bumblebee-pollinated Helleborus foetidus. Journal of Evolutionary Biology, 15, 108–121.CrossRefGoogle Scholar
  30. Jastrebski, C. J., & Robinson, B. W. (2004). Natural selection and the evolution of replicated trophic polymorphisms in pumpkinseed sunfish (Lepomis gibbosus). Evolutionary Ecology Research, 6, 285–305.Google Scholar
  31. Joyce, D. A., Lunt, D. H., Genner, M.J., Turner, G.F., Bills, R., & Seehausen, O. (2011). Repeated colonization and hybridization in Lake Malawi cichlids. Current Biology, 21, R108–R109.PubMedCrossRefGoogle Scholar
  32. Lewontin, R. C., & Birch, L. C. (1966). Hybridization as a source of variation for adaptation to new environments. Evolution, 20, 315–336.CrossRefGoogle Scholar
  33. Loh, Y. H. E., Katz, L. S., Mims, M. C., Kocher, T. D., Yi, S. V., et al. (2008). Comparative analysis reveals signatures of differentiation amid genomic polymorphism in Lake Malawi cichlids. Genome Biology, 9, 110.Google Scholar
  34. Manley, B. F. J. (1994). Multivariate statistical methods: A primer. St. Edmonds, Suffolk: Chapman and Hall, Bury.Google Scholar
  35. Maynard Smith, J. M., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., et al. (1985). Developmental constraints and evolution. Quarterly Review of Biology, 60, 265–287.CrossRefGoogle Scholar
  36. Mayr, E. (1942). Systematics and the origin of species. New York: Columbia University Press.Google Scholar
  37. Mayr, E. (1963). Animal species and evolution. Cambridge, Mass: Belknap Press.Google Scholar
  38. McElroy, D. M., & Kornfield, I. (1993). Novel jaw morphology in hybrids between Pseudotropheus zebra and Labeotropheus fuelleborni (Teleostei: Cichlidae) from Lake Malawi, Africa. Copeia, 1993, 933–945.CrossRefGoogle Scholar
  39. Murren, C. J. (2002). Phenotypic integration in plants. Plant Species Biology, 17, 89–99.CrossRefGoogle Scholar
  40. Neff, B. D. (2004). Stabilizing selection on genomic divergence in a wild fish population. Proceedings of the National Academy of Sciences USA, 101, 2381–2385.CrossRefGoogle Scholar
  41. Orr, H. A. (1998). Testing natural selection versus genetic drift in phenotypic evolution using quantitative trait locus data. Genetics, 149, 2099–2104.PubMedGoogle Scholar
  42. Parsons, K. J., & Robinson, B. W. (2006). Replicated evolution of integrated plastic responses during early adaptive divergence. Evolution, 60, 801–813.PubMedGoogle Scholar
  43. Parsons, K. J., & Robinson, B. W. (2007). Foraging performance of diet-induced morphotypes in pumpkinseed sunfish (Lepomis gibbosus) favours resource polymorphism. Journal of Evolutionary Biology, 20, 673–684.PubMedCrossRefGoogle Scholar
  44. Pavlicev, M., Cheverud, J. M., & Wagner, G. P. (2011). Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proceedings of the Royal Society of London Series B, 278, 1903–1912.PubMedCrossRefGoogle Scholar
  45. Pavlicev, M., Cheverud, J. M., & Wagner, G. P. (2009). Measuring morphological integration using eigenvalue variance. Evolutionary Biology, 36, 157–170.CrossRefGoogle Scholar
  46. Pavličev, M., Kenney-Hun, J., Norgard, E., Roseman, C., Wolf, J., & Cheverud, J. (2008). Genetic variation in pleiotropy: Differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution, 62, 199–213.PubMedGoogle Scholar
  47. Peres-Neto, P. R., & Jackson, D. A. (2001). How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia, 129, 169–178.CrossRefGoogle Scholar
  48. Pigliucci, M. (2008). Is evolvability evolvable? Nature Reviews Genetics, 9, 75–82.PubMedCrossRefGoogle Scholar
  49. Potts, B. M., & Reid, J. B. (1985). Analysis of a hybrid swarm between Eucalyptus risdonii Hook. f. and E. amygdalina Labill. Australian Journal of Botany, 33, 543–562.CrossRefGoogle Scholar
  50. Ribbink, A. J., Marsh, A. C., Ribbink, C. C., & Sharp, B. J. (1983). A preliminary survey of the cichlid fishes of rocky habitats in Lake Malawi. South African Journal of Zoology, 18, 149–310.Google Scholar
  51. Rieseberg, L. H., Archer, M. A., & Wayne, R. K. (1999a). Transgressive segregation, adaptation and speciation. Heredity, 83, 363–372.PubMedCrossRefGoogle Scholar
  52. Rieseberg, L. H., Whitton, J., & Gardner, K. (1999b). Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics, 152, 713–727.PubMedGoogle Scholar
  53. Rieseberg, L. H., Raymond, O., Rosenthal, D. M., Lai, Z., Livingstone, K., Nakazato, T., et al. (2003a). Major ecological transitions in wild sunflowers facilitated by hybridization. Science, 301, 1211–1216.PubMedCrossRefGoogle Scholar
  54. Rieseberg, L. H., Widmer, A., Arntz, A. M., & Burke, J. M. (2003b). The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. Philosophical Transactions of the Royal Society of London Series B, 358, 1141–1147.PubMedCrossRefGoogle Scholar
  55. Rohlf, F. J., & Marcus, L. F. (1993). A revolution in morphometrics. Trends in Ecology & Evolution, 8, 129–132.CrossRefGoogle Scholar
  56. Rohlf, F. J., & Slice, D. E. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39, 40–59.CrossRefGoogle Scholar
  57. Ruber, L., Meyer, A., Sturmbauer, C., & Verheyen, E. (2001). Population structure in two sympatric species of the Tanganyika cichlid tribe Eretmodini: Evidence for introgression. Molecular Ecology, 10, 1207–1225.PubMedCrossRefGoogle Scholar
  58. Salzburger, W., Baric, S., & Sturmbauer, C. (2002). Speciation via introgression hybridization in African cichlids? Molecular Ecology, 11, 619–625.PubMedCrossRefGoogle Scholar
  59. Schlichting, C. D. (1989). Phenotypic integration and environmental change. BioScience, 39, 460–464.CrossRefGoogle Scholar
  60. Schlichting, C. D., & Pigliucci, M. (1998). Phenotypic evolution: A reaction norm perspective. Sunderland, MA: Sinauer Associates.Google Scholar
  61. Schluter, D. (1996). Ecological causes of adaptive radiation. American Naturalist, 148(Supplement), S40–S64.Google Scholar
  62. Seehausen, O. (2004). Hybridization and adaptive radiation. Trends in Ecology & Evolution, 19, 198–207.CrossRefGoogle Scholar
  63. Sites, J. W., Peccinini-Seale, D. M., Moritz, C., Wright, J. W., & Brown, W. M. (1990). The evolutionary history of parthenogenetic Cnemidophorus lem- niscatus (Sauria: Teiidae). I. Evidence for hybrid origin. Evolution, 44, 906–921.CrossRefGoogle Scholar
  64. Smith, P. F., Konings, A., & Kornfield, I. (2003). Hybrid origin of a cichlid population in Lake Malawi: Implications for genetic variation and species diversity. Molecular Ecology, 12, 2497–2507.PubMedCrossRefGoogle Scholar
  65. Stebbins, G. L., Jr. (1959). The role of hybridization in evolution. Proceedings of the American Philosophical Society, 103, 231–251.Google Scholar
  66. Stelkens, R. B., Schmid, C., Selz, O., & Seehausen, O. (2009). Phenotypic novelty in experimental hybrids is predicted by the genetic distance between species of cichlid fish. BMC Evolutionary Biology, 9, 283.PubMedCrossRefGoogle Scholar
  67. Sturmbauer, C. (1998). Explosive speciation in cichlid fishes of the African Great Lakes: A dynamic model of adaptive radiation. Journal of Fish Biology, 53, 18–36.CrossRefGoogle Scholar
  68. Sturmbauer, C., Baric, S., Salzburger, W., Rüber, L., & Verheyen, E. (2001). Lake level fluctuations synchronize genetic divergences of cichlid fishes in African lakes. Molecular Biology and Evolution, 18, 144–154.PubMedGoogle Scholar
  69. Via, S. (2009). Natural selection in action during speciation. Proceedings of the National Academy of Sciences USA, 106, 9939–9946.CrossRefGoogle Scholar
  70. Vrijenhoek, R. C., Dawley, R. M., Cole, C. J., & Bogart, J. P. (1989). A list of the known unisexual vertebrates. In R. M. Dawley & J. P. Bogart (Eds.), Evolution and ecology of unisexual vertebrates (pp. 19–23). Albany, NY: State University of New York Press.Google Scholar
  71. Wagner, G. P., & Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.CrossRefGoogle Scholar
  72. Young, K. A., Snoeks, J., & Seehausen, O. (2009). Morphological diversity and the roles of contingency, chance and determinism in African cichlid radiations. PLoS ONE, 4, e4740.PubMedCrossRefGoogle Scholar
  73. Young, N. M., Wagner, G. P., & Hallgrimsson, B. (2010). Development and the evolvability of human limbs. Proceedings of the National Academy of Sciences USA, 107, 3401–3405.Google Scholar
  74. Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2004). Geometric morphometrics for biologists: A primer. NY: Elsevier.Google Scholar
  75. Zelditch, M. L., Wood, A. R., & Swiderski, D. L. (2009). Building developmental integration into functional systems: Function-induced integration of mandibular shape. Evolutionary Biology, 36, 71–87.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kevin J. Parsons
    • 1
  • Young H. Son
    • 1
  • R. Craig Albertson
    • 1
    • 2
  1. 1.Department of BiologySyracuse UniversitySyracuseUSA
  2. 2.Department of BiologyUniversity of MassachusettsAmherstUSA

Personalised recommendations