Advertisement

Evolutionary Biology

, Volume 38, Issue 3, pp 316–334 | Cite as

Functional and Genetic Integration in the Skulls of Lake Malawi Cichlids

  • W. James Cooper
  • James Wernle
  • Kenneth Mann
  • R. Craig Albertson
Research Article

Abstract

The level of integration present among organismal traits is thought to influence evolutionary potential, and this potential should be affected by the type or types of integration displayed (e.g., functional, developmental, or genetic). Morphological integration is generally high among functionally related traits, but whether this is predominantly determined by genetic architecture, or is instead a result of biomechanical remodeling during development remains poorly understood. We examine this question in Lake Malawi cichlid fishes by combining a finite-element analysis (FEA) of bite force transmission with quantitative genetic analyses of skull morphology in order to test the hypothesis that functionally coupled traits share a common genetic basis. FEA modeling indicates that the profile of the neurocranium affects its ability to resist forces transmitted from the jaws during biting, and suggests a novel role for skull shape in fish feeding mechanics. Quantitative trait loci mapping demonstrates that the functional integration between jaw and neurocranial shape has a genetic basis, and that this association is being driven by alleles inherited from the specialized biting species. Notably, the co-inheritance of these two functionally related traits in our F2 matches patterns of covariation within and between Lake Malawi cichlid species. Across species, jaw and neurocranial shapes covary, but the trend appears strongest among biting species. Similarly, within populations of biting species, the dimensions of the jaw and neurocranium are tightly linked, whereas this correlation disappears within populations of omnivorous and suction feeding fish. These data suggest (1) that either pleiotropy, or physical linkage maintained by selection, underlies the phenotypic integration of these two functionally related traits, and (2) that this pattern of integration may have influenced the radiation of craniofacial morphology in Lake Malawi cichlids.

Keywords

Modularity Evolvability Adaptive radiation FEA QTL Lake Malawi cichlids 

Notes

Acknowledgments

We would like to thank J.T. Streelman and N. Parnell for providing the most recent Malawi cichlid linkage map for use in this study, and J.T. Streelman and E.R. Dumont for insightful comments on drafts of this manuscript.

Supplementary material

11692_2011_9124_MOESM1_ESM.doc (50 kb)
Supplementary material 1 (DOC 50 kb)

References

  1. Albertson, R. C., & Kocher, T. D. (2001). Assessing morphological differences in an adaptive trait: A landmark-based morphometric approach. Journal of Experimental Zoology, 289, 385–403.PubMedCrossRefGoogle Scholar
  2. Albertson, R. C., & Kocher, T. D. (2006). Genetic and developmental basis of cichlid trophic diversity. Heredity, 97, 211–221.PubMedCrossRefGoogle Scholar
  3. Albertson, R. C., Markert, J. A., Danley, P. D., & Kocher, T. D. (1999). Phylogeny of a rapidly evolving clade: The cichlid fishes of Lake Malawi, East Africa. Proceedings of the National Academy of Sciences of the United States of America, 96, 5107–5110.PubMedCrossRefGoogle Scholar
  4. Albertson, R. C., Streelman, J. T., & Kocher, T. D. (2003a). Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes. Proceedings of the National Academy of Sciences of the United States of America, 100, 5252–5257.PubMedCrossRefGoogle Scholar
  5. Albertson, R. C., Streelman, J. T., & Kocher, T. D. (2003b). Genetic basis of adaptive shape differences in the cichlid head. Journal of Heredity, 94, 291–301.PubMedCrossRefGoogle Scholar
  6. Albertson, R. C., Streelman, J. T., Kocher, T. D., & Yelick, P. C. (2005). Integration and evolution of the cichlid mandible: The molecular basis of alternate feeding strategies. Proceedings of the National Academy of Sciences of the United States of America, 102, 16287–16292.PubMedCrossRefGoogle Scholar
  7. Armbruster, W. S., Pelabon, C., Hansen, T. F., & Mulder, C. P. H. (2004). Floral integration, modularity, and accuracy: Distinguishing complex adaptations from genetic constraints. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes. New York: Oxford University Press.Google Scholar
  8. Badyaev, A. V., & Hill, G. E. (2000). The evolution of sexual dimorphism in the house finch. I. Population divergence in morphological covariance structure. Evolution, 54, 1784–1794.PubMedGoogle Scholar
  9. Barel, C. D. N. (1983). Toward a constructional morphology of cichlid fishes (Teleostei, Perciformes). Netherlands Journal of Zoology, 33, 357–424.CrossRefGoogle Scholar
  10. Barel, C. D. N., Witte, F., & van Oijen, M. J. P. (1976). The shape of the skeletal elements in the head of a generalized Haplochromis species: H. elegans Trewavas 1933 (Pisces, Cichlidae). Netherlands Journal of Zoology, 26, 163–265.CrossRefGoogle Scholar
  11. Beavis, W. D. (1994). The power and deceit of QTL experiments: Lessons from comparative QTL studies (pp. 252–268). In 49th annual corn and sorghum research conference. Washington, DC: American Seed Trade Association.Google Scholar
  12. Beavis, W. D. (1998). QTL analyses: Power, precision, and accuracy. In A. H. Paterson (Ed.), Molecular dissection of complex traits (pp. 145–161). Boca Raton: CRC Press.Google Scholar
  13. Begin, M., & Roff, D. A. (2003). The constancy of the G matrix through species divergence and the effects of quantitative genetic constraints on phenotypic evolution: A case study in crickets. Evolution, 57, 1107–1120.PubMedGoogle Scholar
  14. Berg, R. L. (1960). The ecological significance of correlation pleiades. Evolution, 14, 171–180.CrossRefGoogle Scholar
  15. Berner, D., Adams, D. C., Grandchamp, A. C., & Hendry, A. P. (2008). Natural selection drives patterns of lake-stream divergence in stickleback foraging morphology. Journal of Evolutionary Biology, 21, 1653–1665.PubMedCrossRefGoogle Scholar
  16. Burger, R. (1986). Constraints for the evolution of functionally coupled characters—a nonlinear-analysis of a phenotypic model. Evolution, 40, 182–193.CrossRefGoogle Scholar
  17. Chase, K., Carrier, D. R., Adler, F. R., Jarvik, T., Ostrander, E. A., Lorentzen, T. D., et al. (2002). Genetic basis for systems of skeletal quantitative traits: Principal component analysis of the canid skeleton. Proceedings of the National Academy of Sciences of the United States of America, 99, 9930–9935.PubMedCrossRefGoogle Scholar
  18. Chenoweth, S. F., Rundle, H. D., & Blows, M. W. (2010). The contribution of selection and genetic constraints to phenotypic divergence. American Naturalist, 175, 186–196.PubMedCrossRefGoogle Scholar
  19. Cheverud, J. M. (1984). Developmental integration and the evolution of pleiotropy. American Zoologist, 36, 44–50.Google Scholar
  20. Cheverud, J. M. (1988). The evolution of genetic correlation and developmental constraints. In G. de Jong (Ed.), Population genetics and evolution (pp. 94–101). Berlin: Springer.Google Scholar
  21. Cheverud, J. M. (1996). Quantitative genetic analysis of cranial morphology in the cotton-top (Saguinus oedipus) and saddle-back (S-fuscicollis) tamarins. Journal of Evolutionary Biology, 9, 5–42.CrossRefGoogle Scholar
  22. Cheverud, J. M. (2004). Modular pleiotropic effects of quantitative trait loci of morphological traits. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 132–153). Chicago: The University of Chicago Press.Google Scholar
  23. Cheverud, J. M., Ehrich, T. H., Vaughn, T. T., Koreishi, S. F., Linsey, R. B., & Pletscher, L. S. (2004). Pleiotropic effects on mandibular morphology II: Differential epistasis and genetic variation in morphological integration. Journal of Experimental Zoology Part B-Molecular and Developmental Evolution, 302B, 424–435.CrossRefGoogle Scholar
  24. Cheverud, J. M., Routman, E. J., & Irschick, D. J. (1997). Pleiotropic effects of individual gene loci on mandibular morphology. Evolution, 51, 2006–2016.CrossRefGoogle Scholar
  25. Christians, J. K., & Senger, L. K. (2007). Fine mapping dissects pleiotropic growth quantitative trait locus into linked loci. Mammalian Genome, 18, 240–245.PubMedCrossRefGoogle Scholar
  26. Clausen, J., & Heisey, W. M. (1960). The balance between coherence and variation in evolution. Proceedings of the National Academy of Sciences of the United States of America, 46, 494–506.PubMedCrossRefGoogle Scholar
  27. Collar, D. C., O’Meara, B. C., Wainwright, P. C., & Near, T. J. (2009). Piscivory limits diversification of feeding morphology in centrarchid fishes. Evolution, 63, 1557–1573.PubMedCrossRefGoogle Scholar
  28. Colosimo, P. F., Hosemann, K. E., Balabhadra, S., Villarreal, G., Jr, Dickson, M., Grimwood, J., et al. (2005). Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science, 307, 1928–1933.PubMedCrossRefGoogle Scholar
  29. Cooper, W. J., Parsons, K., McIntyre, A., Kern, B., McGee-Moore, A., & Albertson, R. C. (2010). Bentho-pelagic divergence of cichlid feeding architecture was prodigious and consistent during multiple adaptive radiations within african rift-lakes. PLoS One, 5, e9551.PubMedCrossRefGoogle Scholar
  30. Cooper, W. J., & Westneat, M. W. (2009). Form and function of damselfish skulls: Rapid and repeated evolution into a limited number of trophic niches. BMC Evolutionary Biology, 9.Google Scholar
  31. Cresko, W. A., Amores, A., Wilson, C., Murphy, J., Currey, M., Phillips, P., et al. (2004). Parallel genetic basis for repeated evolution of armor loss in Alaskan threespine stickleback populations. Proceedings of the National Academy of Sciences of the United States of America, 101(16), 6050–6055.PubMedCrossRefGoogle Scholar
  32. Danley, P. D., & Kocher, T. D. (2001). Speciation in rapidly diverging systems: Lessons from Lake Malawi. Molecular Ecology, 10, 1075–1086.PubMedCrossRefGoogle Scholar
  33. De Visser, J., & Barel, C. D. N. (1998). The expansion apparatus in fish heads, a 3-D kinetic deduction. Netherlands Journal of Zoology, 48, 361–395.CrossRefGoogle Scholar
  34. Drake, G. A., & Klingenberg, C. P. (2010). Large-scale diversification of skull shape in domestic dogs: Disparity and modularity. The American Naturalist, 175, 289–301.PubMedCrossRefGoogle Scholar
  35. Dumont, E. R., Grosse, I. R., & Slater, G. (2009). Requirements for comparing the performance of finite element models of biological structures. Journal of Theoretical Biology, 256, 96–103.PubMedCrossRefGoogle Scholar
  36. Dumont, E. R., Piccirillo, J., & Grosse, I. R. (2005). Finite-element analysis of biting behavior and bone stress in the facial skeletons of bats. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 283, 319–330.CrossRefGoogle Scholar
  37. Eden, M. (Ed.). (1967). Inadequacies of Neo-Darwinian evolution as a scientific theory. Philadelphia: Wistar Institute Press.Google Scholar
  38. Ehrich, T. H., Vaughn, T. T., Koreishi, S. F., Linsey, R. B., Pletscher, L. S., & Cheverud, J. M. (2003). Pleiotropic effects on mandibular morphology I. Developmental morphological integration and differential dominance. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 296, 58–79.Google Scholar
  39. Eschmeyer, W. N., & Fricke, R. (2011). Catalog of fishes electronic version.Google Scholar
  40. Genner, M. J., Seehausen, O., Lunt, D. H., Joyce, D. A., Shaw, P. W., Carvalho, G. R., et al. (2007). Age of cichlids: New dates for ancient lake fish radiations. Molecular Biology and Evolution, 24, 1269–1282.PubMedCrossRefGoogle Scholar
  41. Griswold, C. K. (2006). Pleiotropic mutation, modularity and evolvability. Evolution & Development, 8, 81–93.CrossRefGoogle Scholar
  42. Hallgrimsson, B., Willmore, K. E., Dorval, C. J., & Cooper, D. M. L. (2004). Craniofacial variability and modularity in macaques and mice. Journal of Experimental Zoology (molecular and developmental evolution), 302B, 207–225.CrossRefGoogle Scholar
  43. Hansen, T. F. (2003). Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems, 69, 83–94.PubMedCrossRefGoogle Scholar
  44. Hansen, T. F., Pelabon, C., Armbruster, W. S., & Carlson, M. L. (2003). Evolvability and genetic constraint in Dalechampia blossoms: components of variance and measures of evolvability. Journal of Evolutionary Biology, 16, 754–766.PubMedCrossRefGoogle Scholar
  45. Hendrikse, J. L., Parsons, T. E., & Hallgrimsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development, 9, 393–401.CrossRefGoogle Scholar
  46. Hohenlohe, P. A., Bassham, S., Etter, P. D., Stiffler, N., Johnson, E. A., & Cresko, W. A. (2010). Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet, 6, e1000862.PubMedCrossRefGoogle Scholar
  47. Holzman, R., Day, S. W., Mehta, R. S., & Wainwright, P. C. (2008). Integrating the determinants of suction feeding performance in centrarchid fishes. Journal of Experimental Biology, 211, 3296–3305.PubMedCrossRefGoogle Scholar
  48. Hulsey, C. D., Mims, M. C., Parnell, N. F., & Streelman, J. T. (2010). Comparative rates of lower jaw diversification in cichlid adaptive radiations. Journal of Evolutionary Biology, 23, 1456–1467.PubMedCrossRefGoogle Scholar
  49. Hunt, G. (2007). Evolutionary divergence in directions of high phenotypic variance in the ostracode genus Poseidonamicus. Evolution, 61, 1560–1576.PubMedCrossRefGoogle Scholar
  50. Joyce, D. A., Lunt, D. H., Genner, M. J., Turner, G. F., Bills, R., & Seehausen, O. (2011). Repeated colonization and hybridization in Lake Malawi cichlids. Current Biology, 21(3), R108–R109.PubMedCrossRefGoogle Scholar
  51. Kimmel, C. B., Miller, C. T., & Moens, C. B. (2001). Specification and morphogenesis of the zebrafish larval head skeleton. Developmental Biology, 233, 239–257.PubMedCrossRefGoogle Scholar
  52. Kimmel, C. B., Ullmann, B., Walker, C., Wilson, C., Currey, M., Phillips, P. C., et al. (2005). Evolution and development of facial bone morphology in threespine sticklebacks. Proceedings of the National Academy of Sciences of the United States of America, 102, 5791–5796.PubMedCrossRefGoogle Scholar
  53. Klingenberg, C. P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology, Evolution, and Systematics, 39, 115–132.CrossRefGoogle Scholar
  54. Klingenberg, C. P. (2010). Evolution and development of shape: Integrating quantitative approaches. Nature Reviews Genetics, 11, 623–635.PubMedGoogle Scholar
  55. Klingenberg, C. P., Leamy, L. J., & Cheverud, J. M. (2004). Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible. Genetics, 166, 1909–1921.PubMedCrossRefGoogle Scholar
  56. Klingenberg, C. P., Leamy, L. J., Routman, E. J., & Cheverud, J. M. (2001). Genetic architecture of mandible shape in mice: Effects of quantitative trait loci analyzed by geometric morphometrics. Genetics, 157, 785–802.PubMedGoogle Scholar
  57. Korff, W. L., & Wainwright, P. C. (2004). Motor pattern control for increasing crushing force in the striped burrfish (Chilomycterus schoepfi). Zoology, 107, 335–346.PubMedCrossRefGoogle Scholar
  58. Kornfield, I., & Smith, P. F. (2000). African cichlid fishes: Model systems for evolutionary biology. Annual Review of Ecology and Systematics, 31, 163–+.Google Scholar
  59. Leamy, L. J., Klingenberg, C. P., Sherratt, E., Wolf, J. B., & Cheverud, J. M. (2008). A search for quantitative trait loci exhibiting imprinting effects on mouse mandible size and shape. Heredity, 101, 518–526.PubMedCrossRefGoogle Scholar
  60. Liem, K. F. (1991). Functional morphology. In M. H. A. Keenleyside (Ed.), Cichlid fishes: behavior, ecology and evolution (pp. 129–150). London: Chapman and Hall.Google Scholar
  61. Loh, Y. H., Katz, L. S., Mims, M. C., Kocher, T. D., Yi, S. V., & Streelman, J. T. (2008). Comparative analysis reveals signatures of differentiation amid genomic polymorphism in Lake Malawi cichlids. Genome Biology, 9(7), R113.PubMedCrossRefGoogle Scholar
  62. Maddison, W. P., & Maddison, D. R. (2008). Mesquite: A modular system for evolutionary analysis.Google Scholar
  63. Manly, B. F. J. (2006). Randomization, bootstrap and Monte Carlo methods in biology. Boca Raton: Chapman and Hall/CRC Press.Google Scholar
  64. Mann, K. A., Lee, J., Arrington, S. A., Damron, T. A., & Allen, M. J. (2008). Predicting distal femur bone strength in a murine model of tumor osteolysis. Clinical Orthopaedics and Related Research, 466, 1271–1278.PubMedCrossRefGoogle Scholar
  65. Marquez, E. J. (2008). A statistical framework for testing modularity in multidimensional data. Evolution, 62, 2688–2708.PubMedCrossRefGoogle Scholar
  66. Marroig, G., & Cheverud, J. M. (2005). Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in new world monkeys. Evolution, 59, 1128–1142.PubMedGoogle Scholar
  67. Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., et al. (1985). Developmental constraint and evolution. Quarterly Review of Biology, 60, 265–287.CrossRefGoogle Scholar
  68. Merila, J., & Bjorklund, M. (1999). Population divergence and morphometric integration in the greenfinch (Carduelis chloris)—evolution against the trajectory of least resistance? Journal of Evolutionary Biology, 12, 103–112.CrossRefGoogle Scholar
  69. Mezey, J. G., Cheverud, J. M., & Wagner, G. P. (2000). Is the genotype-phenotype map modular? A statistical approach using mouse quantitative trait loci data. Genetics, 156, 305–311.PubMedGoogle Scholar
  70. Midford, P. E., Garland, T., & Maddison, W. P. (2007). PDAP:PDTREE version 1.15: A translation of the PDTREE application of Garland et al.’s Phenotypic Diversity Analysis Programs.Google Scholar
  71. Miller, R. G. (1974). The jacknife: A review. Biometrika, 61, 1–15.Google Scholar
  72. Mims, M. C., Hulsey, C. D., Fitzpatrick, B. M., & Streelman, J. T. (2010). Geography disentangles introgression from ancestral polymorphism in Lake Malawi cichlids. Molecular Ecology, 19, 940–951.PubMedCrossRefGoogle Scholar
  73. MitchellOlds, T. (1996). Pleiotropy causes long-term genetic constraints on life-history evolution in Brassica rapa. Evolution, 50, 1849–1858.CrossRefGoogle Scholar
  74. Monteiro, L. R., Bonato, V., & dos Reis, S. F. (2005). Evolutionary integration and morphological diversification in complex morphological structures: mandible shape divergence in spiny rats (Rodentia, Echimyidae). Evolution and Development, 7, 429–439.PubMedCrossRefGoogle Scholar
  75. Moran, P., & Kornfield, I. (1993). Retention of an ancestral polymorphism in the mbuna species flock (Teleostei: Cichlidae) of Lake Malawi. Molecular Biology and Evolution, 10(5), 1015–1029.Google Scholar
  76. Mow, V. C., & Hayes, W. C. (1991). Basic orthopaedic biomechanics. New York: Raven Press.Google Scholar
  77. Murren, C. J. (2002). Phenotypic integration in plants. Plant Species Biology, 17, 89–99.CrossRefGoogle Scholar
  78. Murren, C. J., & Kover, P. X. (2004). QTL mapping: A first step toward an understanding of molecular genetic mechanisms behind phenotypic complexity/integration. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 195–212). New York: Oxford University Press.Google Scholar
  79. Olson, E. N., & Miller, R. L. (1958). Morphological integration. Chicago: University of Chicago Press.Google Scholar
  80. Otten, E. (1983). The jaw mechanism during growth of a generalized haplochromis species—H-Elegans Trewavas 1933 (Pisces, Cichlidae). Netherlands Journal of Zoology, 33, 55–98.CrossRefGoogle Scholar
  81. Otten, E. (1985). Proportions of the jaw mechanism of cichlid fishes changes and their meaning. Acta Biotheoretica, 34, 207–217.CrossRefGoogle Scholar
  82. Parker, A., & Kornfield, I. (1997). Evolution of the mitochondrial DNA control region in the mbuna (Cichlidae) species flock of Lake Malawi, East Africa. Journal of Molecular Evolution, 45, 70–83.PubMedCrossRefGoogle Scholar
  83. Pavlicev, M., Cheverud, J. M., & Wagner, G. P. (2010). Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proceedings of Biological Sciences Nov 24 [Epub ahead of print].Google Scholar
  84. Pavlicev, M., Kenney-Hunt, J. P., Norgard, E. A., Roseman, C. C., Wolf, J. B., & Cheverud, J. M. (2008). Genetic variation in pleiotropy: Differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution, 62, 199–213.PubMedGoogle Scholar
  85. Peichel, C. L., Nereng, K. S., Ohgi, K. A., Cole, B. L., Colosimo, P. F., Buerkle, C. A., et al. (2001). The genetic architecture of divergence between threespine stickleback species. Nature, 414, 901–905.PubMedCrossRefGoogle Scholar
  86. Pepper, J. W. (2003). The evolution of evolvability in genetic linkage patterns. Biosystems, 69, 115–126.PubMedCrossRefGoogle Scholar
  87. Piotrowski, T., Schilling, T. F., Brand, M., Jiang, Y. J., Heisenberg, C. P., Beuchle, D., et al. (1996). Jaw and branchial arch mutants in zebrafish II: Anterior arches and cartilage differentiation. Development, 123, 345–356.PubMedGoogle Scholar
  88. Potvin, C., & Roff, D. A. (1993). Distribution-free and robust statistical-methods—viable alternatives to parametric statistics. Ecology, 74, 1617–1628.CrossRefGoogle Scholar
  89. Price, A. H. (2006). Believe it or not, QTLs are accurate! Trends Plant Science, 11, 213–216.CrossRefGoogle Scholar
  90. Protas, M., Conrad, M., Gross, J. B., Tabin, C., & Borowsky, R. (2007). Regressive evolution in the Mexican cave tetra, Astyanax mexicanus. Current Biology, 17, 452–454.PubMedCrossRefGoogle Scholar
  91. Protas, M., Tabansky, I., Conrad, M., Gross, J. B., Vidal, O., Tabin, C. J., et al. (2008). Multi-trait evolution in a cave fish, Astyanax mexicanus. Evolution & Development, 10, 196–209.CrossRefGoogle Scholar
  92. Raff, R. (1996). The shape of life: Genes, development, and the evolution of animal form. Chicago: University of Chicago Press.Google Scholar
  93. Renaud, S., Auffray, J. C., & Michaux, J. (2006). Conserved phenotypic variation patterns, evolution along lines of least resistance, and departure due to selection in fossil rodents. Evolution, 60, 1701–1717.PubMedGoogle Scholar
  94. Renaud, S., Pantalacci, S., Quere, J. P., Laudet, V., & Auffreay, J. C. (2009). Developmental constraints revealed by co-variation within and among molar rows in two murine rodents. Evolution and Development, 11, 590–602.PubMedCrossRefGoogle Scholar
  95. Ribbink, A. J., Marsh, A. C., Ribbink, C. C., & Sharp, B. J. (1983). A preliminary survey of the cichlid fishes of rocky habitats in Lake Malawi. South African Journal of Zoology, 18, 149–308.Google Scholar
  96. Rice, A. N., Cooper, W. J., & Westneat, M. W. (2008). Diversification of coordination patterns during feeding behaviour in cheiline wrasses. Biological Journal of the Linnean Society, 93, 289–308.CrossRefGoogle Scholar
  97. Roberts, R. B., Ser, J. R., & Kocher, T. D. (2009). Sexual conflict resolved by invasion of a novel sex determiner in Lake Malawi cichlid fishes. Science, 326, 998–1001.PubMedCrossRefGoogle Scholar
  98. Roff, D. (2002). Comparing G matrices: A MANOVA approach. Evolution, 56, 1286–1291.PubMedGoogle Scholar
  99. Salzburger, W., Mack, T., Verheyen, E., & Meyer, A. (2005). Out of Tanganyika: Genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evolutionary Biology, 5.Google Scholar
  100. Salzburger, W., Meyer, A., Baric, S., Verheyen, E., & Sturmbauer, C. (2002). Phylogeny of the Lake Tanganyika Cichlid species flock and its relationship to the Central and East African Haplochromine Cichlid fish faunas. Systematic Biology, 51, 113–135.PubMedCrossRefGoogle Scholar
  101. Schilling, T. F., & Kimmel, C. B. (1997). Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development, 124, 2945–2960.PubMedGoogle Scholar
  102. Schilling, T. F., Piotrowski, T., Grandel, H., Brand, M., Heisenberg, C. P., Jiang, Y. J., et al. (1996). Jaw and branchial arch mutants in zebrafish I: Branchial arches. Development, 123, 329–344.PubMedGoogle Scholar
  103. Schlichting, C. D. (1989). Phenotypic integration and environmental change. BioScience, 39, 460–464.CrossRefGoogle Scholar
  104. Schlichting, C. D., & Pigliucci, M. (1998). Phenotypic evolution: A reaction norm perspective. Sunderland, MA: Sinauer Associates.Google Scholar
  105. Schlosser, G. (2004). The role of modules in development and evolution. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 519–582). Chicago: The University of Chicago Press.Google Scholar
  106. Schluter, D. (1996). Adaptive radiation along genetic lines of least resistance. Evolution, 50, 1766–1774.CrossRefGoogle Scholar
  107. Schluter, D. (2000). The ecology of adaptive radiation. Oxford: Oxford University Press.Google Scholar
  108. Seehausen, O. (2004). Hybridization and adaptive radiation. Trends in Ecology & Evolution, 19(4), 198–207.CrossRefGoogle Scholar
  109. Shapiro, M. D., Marks, M. E., Peichel, C. L., Blackman, B. K., Nereng, K. S., Jonsson, B., et al. (2004). Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature, 428, 717–723.PubMedCrossRefGoogle Scholar
  110. Slater, G. J., Dumont, E. R., & Van Valkenburgh, B. (2009). Implications of predatory specialization for cranial form and function in canids. Journal of Zoology, 278, 181–188.CrossRefGoogle Scholar
  111. Smith, P. F., Konings, A., & Kornfield, I. (2003). Hybrid origin of a cichlid population in Lake Malawi: Implications for genetic variation and species diversity. Molecular Ecology, 12, 2497–2504.PubMedCrossRefGoogle Scholar
  112. Stauffer, J. R., Bowers, N. J., Kocher, T. D., & McKaye, K. R. (1996). Evidence of hybridization between Cynotilapia afra and Pseudotropheus zebra (Teleostei: Cichlidae) following an intralacustrine translocation in Lake Malawi. Copeia, 203–208.Google Scholar
  113. Stiassny, M. L. J., & Meyer, A. (1999). Cichlids of the Rift lakes. Scientific American, 280, 64–69.CrossRefGoogle Scholar
  114. Strait, D. S., Weber, G. W., Neubauer, S., Chalk, J., Richmond, B. G., Lucas, P. W., et al. (2009). The feeding biomechanics and dietary ecology of Australopithecus africanus. Proceedings of the National Academy of Sciences of the United States of America, 106, 2124–2129.PubMedCrossRefGoogle Scholar
  115. Strait, D. S., Wright, B. W., Richmond, B. G., Ross, C. F., Dechow, P. C., Spencer, M. A., et al. (2006). Craniofacial strain patterns during premolar loading: Implications for human evolution. In C. J. Vinyard, M. J. Ravosa, & C. E. Wall (Eds.), Primate craniofacial function and biology (pp. 173–198). New York: Springer.Google Scholar
  116. Suto, J. (2009). Identification of multiple quantitative trait loci affecting the size and shape of the mandible in mice. Mammalian Genome, 20, 1–13.PubMedCrossRefGoogle Scholar
  117. Tanner, J. B., Dumont, E. R., Sakai, S. T., Lundrigan, B. L., & Holekamp, K. E. (2008). Of arcs and vaults: The biomechanics of bone-cracking in spotted hyenas (Crocuta crocuta). Biological Journal of the Linnean Society, 95, 246–255.CrossRefGoogle Scholar
  118. Turner, G. F., Seehausen, O., Knight, M. E., Allender, C. J., & Robinson, R. L. (2001). How many species of cichlid fishes are there in African lakes? Molecular Ecology, 10, 793–806.PubMedCrossRefGoogle Scholar
  119. Van Ooijen, J. W., Boer, M. P., Jansen, R. C., & Maliepaard, C. (2002). QTLMap 4.0. Pp. Software for the calculation of QTL positions on genetic maps. Wageningen, The Netherlands: Plant Research International.Google Scholar
  120. Van Ooijen, J. W., & Voorrips, R. E. (2001). JoinMap 3.0. Pp. Software for the calculation of genetic linkage maps. Wageningen, The Netherlands: Plant Research International.Google Scholar
  121. Verheyen, E., Salzburger, W., Snoeks, J., & Meyer, A. (2003). Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science, 300, 325–329.PubMedCrossRefGoogle Scholar
  122. Wada, N., Javidan, Y., Nelson, S., Carney, T. J., Kelsh, R. N., & Schilling, T. F. (2005). Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull. Development, 132, 3977–3988.PubMedCrossRefGoogle Scholar
  123. Wagner, G. P. (1984). Coevolution of functionally constrained characters: Prerequisites of adaptive versatility. BioSystems, 17, 51–55.PubMedCrossRefGoogle Scholar
  124. Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. American Zoologist, 36, 36–43.Google Scholar
  125. Wagner, G. P., & Altenberg, L. (1996). Perspective: Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.CrossRefGoogle Scholar
  126. Wagner, G. P., & Mezey, J. G. (2004). The role of genetic architecture constraints in the origin of variational modularity. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 338–358). Chicago: The University of Chicago Press.Google Scholar
  127. Wainwright, P. C., Alfaro, M. E., Bolnick, D. I., & Hulsey, C. D. (2005). Many-to-one mapping of form to function: A general principle in organismal design? Integrative and Comparative Biology, 45, 256–262.PubMedCrossRefGoogle Scholar
  128. Wainwright, P. C., Ferry-Graham, L. A., Waltzek, T. B., Carroll, A. M., Hulsey, C. D., & Grubich, J. R. (2001). Evaluating the use of ram and suction during prey capture by cichlid fishes. Journal of Experimental Biology, 204, 3039–3051.PubMedGoogle Scholar
  129. Wainwright, P. C., & Richard, B. A. (1995). Predicting patterns of prey use from morphology of fishes. Environmental Biology of Fishes, 44, 97–113.CrossRefGoogle Scholar
  130. Westneat, M. W. (1990). Feeding mechanics of teleost fishes (Labridae, Perciformes)—a test of 4-bar linkage models. Journal of Morphology, 205, 269–295.CrossRefGoogle Scholar
  131. Westneat, M. W. (1995). Feeding, function, and phylogeny—analysis of historical biomechanics in labrid fishes using comparative methods. Systematic Biology, 44, 361–383.Google Scholar
  132. Westneat, M. W. (2003). A biomechanical model for analysis of muscle force, power output and lower jaw motion in fishes. Journal of Theoretical Biology, 223, 269–281.PubMedCrossRefGoogle Scholar
  133. Westneat, M. W. (2006). Skull biomechanics and suction feeding in fishes. In R. E. Shadwick & G. V. Lauder (Eds.), Fish biomechanics (pp. 29–75). San Diego, CA: Elsevier Academic Press.Google Scholar
  134. Westneat, M. W., Alfaro, M. E., Wainwright, P. C., Bellwood, D. R., Grubichl, J. R., Fessler, J. L., et al. (2005). Local phylogenetic divergence and global evolutionary convergence of skull function in reef fishes of the family Labridae. Proceedings of the Royal Society B-Biological Sciences, 272, 993–1000.CrossRefGoogle Scholar
  135. Winther, R. G. (2001). Varieties of modules: Kinds, levels, origins, and behavors. Journal of Experimental Zoology (molecular and developmental evolution), 291, 116–129.CrossRefGoogle Scholar
  136. Young, K. A., Snoeks, J., & Seehausen, O. (2009). Morphological diversity and the roles of contingency, chance and determinism in african cichlid radiations. PLoS One, 4, e4740.PubMedCrossRefGoogle Scholar
  137. Zelditch, M. L., Wood, A. R., & Swiderski, D. L. (2009). Building Developmental Integration into Functional Systems: Function-Induced Integration of Mandibular Shape. Evolutionary Biology, 36, 71–87.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • W. James Cooper
    • 1
  • James Wernle
    • 2
  • Kenneth Mann
    • 2
  • R. Craig Albertson
    • 1
    • 3
  1. 1.Department of BiologySyracuse UniversitySyracuseUSA
  2. 2.Department of Orthopedic Surgery, 3216 Institute for Human PerformanceSUNY Upstate Medical UniversitySyracuseUSA
  3. 3.Department of BiologyUniversity of Massachusetts AmherstAmherstUSA

Personalised recommendations