Evolutionary Biology

, Volume 38, Issue 3, pp 243–257 | Cite as

Body Size and Termite Evolution

  • Christine A. NalepaEmail author
Synthesis Paper


Termites are a monophyletic lineage within the paraphyletic Blattaria, with xylophagous cockroaches in the genus Cryptocercus as sister group. Given this ancestry, termite divergence involved a substantial leap in body plans, as they are pale, fragile, and miniaturized relative to most cockroaches. Here I suggest that the evolutionary transition to an altricial morphotype in termites is grounded in the economics of utilizing a wood diet, and occurred via a series of sequential steps associated with modifications in social behavior. The chief benefit of an altricial morphotype is suggested to be nitrogen made available by decreasing individual body size and by dispensing with a heavy, melanized cuticle. The primary costs lie in increased vulnerability to environment hazards, including predators, pathogens, and desiccation. Termites tipped the evolutionary scale via cooperative behaviors that mitigate the cost or amplify the benefit of a small, fragile morphotype, and were present in rudimentary form in their cockroach relatives. These include building behavior, cooperative feeding, allogrooming, and most notably, trophallaxis. It was the directed circulation of nitrogenous reserves via trophallactic feeding among units of the superorganism rather than their progressive storage in a large, heavily armored body that was the foundation of termite evolutionary success.


Altricial development Cuticle Trophallaxis Nitrogen Eusociality Miniaturization 



I am grateful to Donald Mullins for discussion and encouragement, to David Bignell for commenting on a part of the manuscript, to Peter Vršanský and Christian Bordereau for translations, and to Benedikt Hallgrimsson for his kind invitation to write this paper. These ideas were presented at the 16th Congress of the IUSSI (Copenhagen, August 2010). Dédié à la mémoire de Charles Noirot.



Alates are the mature, winged reproductives of a termite colony. After these individuals have shed their wings prior to colony foundation they are called dealates


The ingestion of fecal material


The terms helper and alloparent are used here interchangeably to indicate a developmentally arrested juvenile termite that performs parental tasks, but retains the ability to develop to reproductive maturity. These individuals are also called pseudoworkers or pseudergates


(pl. imagoes)—the post-metamorphic, sexually mature adult stage of an insect


The ingestion of dead bodies


The division of labor among members of a colony


The gizzard, at the posterior portion of the foregut


A term applied to recently molted, pale, soft-bodied individuals


The exchange of alimentary canal fluid among colony members. Here the term refers to fluid originating from the anus (= proctodeal trophallaxis). The behavior is distinct from coprophagy


  1. Alexander, R. M. (1990). How did humans evolve? Reflections on the uniquely unique species. University of Michigan Museum of Zoology Special Publications, 1, 1–38.Google Scholar
  2. Andersen, S. O. (1990). Sclerotization of insect cuticle. In E. Ohnishi & H. Ishizaki (Eds.), Molting and metamorphosis (pp. 133–155). Tokyo: Japan Scientific Societies Press.Google Scholar
  3. Andersen, S. O. (2000). Studies on proteins in post-ecdysial nymphal cuticle of locust, Locusta migratoria, and cockroach, Blaberus craniifer. Insect Biochemistry and Molecular Biology, 30, 569–577.PubMedGoogle Scholar
  4. Armitage, S. A. O., & Siva-Jothy, M. T. (2005). Immune function responds to selection for cuticular colour in Tenebrio molitor. Heredity, 94, 650–656.PubMedGoogle Scholar
  5. Barrett, E. L. B., Hunt, J., Moore, A. J., & Moore, P. J. (2009). Separate and combined effects of nutrition during juvenile and sexual development on female life history trajectories: the thrifty phenotype in a cockroach. Proceedings of the Royal Society B, 276, 3257–3264.PubMedGoogle Scholar
  6. Bell, W. J., Roth, L. M., & Nalepa, C. A. (2007). Cockroaches: Ecology, behavior, and natural history. Baltimore: The Johns Hopkins University Press.Google Scholar
  7. Belyaeva, N. V. (2004). A new species of the genus Archotermopsis desneux (Isoptera, Termopsinae) from North Vietnam. Entomologicheskoe Obozrenie, 83, 369–377.Google Scholar
  8. Bentley, B. L. (1984). Nitrogen fixation in termites: Fate of newly fixed nitrogen. Journal of Insect Physiology, 30, 653–655.Google Scholar
  9. Bernays, E. A. (1985). Regulation of feeding behavior. Comparative Insect Physiology, Biochemistry and Pharmacology, 4, 1–32.Google Scholar
  10. Bernays, E. A. (1986a). Diet-induced head allometry among foliage-chewing insects and its importance for graminivores. Science, 231, 495–497.PubMedGoogle Scholar
  11. Bernays, E. A. (1986b). Evolutionary contrasts in insects: Nutritional advantages of holometabolous development. Physiological Ecology, 11, 377–382.Google Scholar
  12. Bernays, E. A., Jarzembowski, E. A., & Malcolm, S. B. (1991). Evolution of insect morphology in relation to plants. Philosophical Transactions of the Royal Society of London Series B, 333, 257–264.Google Scholar
  13. Bignell, D. E. (2011). Morphology, physiology, biochemistry and functional design of the termite gut: An evolutionary wonderland. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 375–412). Dordrecht: Springer.Google Scholar
  14. Blom, J., & Lilja, C. (2005). A comparative study of embryonic development of some bird species with different patterns of postnatal growth. Zoology, 108, 81–95.PubMedGoogle Scholar
  15. Bonner, J. T. (2006). Why size matters. From bacteria to blue whales. Princeton: Princeton University Press.Google Scholar
  16. Breznak, J. A. (2000). Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 209–231). Dortrecht: Kluwar Academic Publishers.Google Scholar
  17. Brune, A., & Ohkuma, M. (2011). Role of the termite gut microbiota in symbiotic digestion. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 439–475). Dordrecht: Springer.Google Scholar
  18. Case, T. J. (1978). On the evolution and adaptive significance of postnatal growth rates in the terrestrial vertebrates. Quarterly Review of Biology, 53, 243–282.PubMedGoogle Scholar
  19. Chapman, R. F. (1982). The insects. Structure and function. Cambridge: Harvard University Press.Google Scholar
  20. Chown, S. L., & Nicolson, S. W. (2004). Insect physiological ecology: Mechanisms and patterns. Oxford: Oxford University Press.Google Scholar
  21. Cleveland, L. R., Hall, S. R., Sanders, E. P., & Collier, J. (1934). The wood feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Memoirs of the American Academy of Arts and Science, 17, 185–342.Google Scholar
  22. Clissold, F. J. (2007). The biomechanics of chewing and plant fracture: Mechanisms and implications. Advances in Insect Physiology, 34, 317–372.Google Scholar
  23. Cloudsley-Thompson, J. L. (1988). Evolution and adaptation of terrestrial arthropods. Berlin: Springer.Google Scholar
  24. Clutton-Brock, T. H. (1991). The evolution of parental care. Princeton: Princeton University Press.Google Scholar
  25. Cochran, D. G. (1979). Comparative analysis of excreta and fat body from various cockroach species. Comparative Biochemistry and Physiology, 64A, 1–4.Google Scholar
  26. Cochran, D. G., & Mullins, D. E. (1982). Physiological processes relating to nitrogen excretion in cockroaches. Journal of Experimental Zoology, 222, 277–285.Google Scholar
  27. Collins, M. S. (1969). Water relations in termites. In K. W. Krishna & F. M. Weesner (Eds.), Biology of termites (Vol. 1, pp. 433–458). New York: Academic Press.Google Scholar
  28. Cowling, E. B., & Merrill, W. (1966). Nitrogen in wood and its role in wood deterioration. Canadian Journal of Botany, 44, 1539–1554.Google Scholar
  29. Crespi, B. J. (2004). Vicious circles: Positive feedback in major evolutionary and ecological transitions. Trends in Ecology & Evolution, 19, 627–633.Google Scholar
  30. Dambach, M., & Goehlen, B. (1999). Aggregation density and longevity correlate with humidity in first instar nymphs of the cockroach (Blattella germanica L., Dictyoptera). Journal of Insect Physiology, 45, 423–429.PubMedGoogle Scholar
  31. Darlington, J. P. E. C. (1970). Studies on the ecology of the Tamana Caves with special reference to cave dwelling cockroaches. Trinidad: University of the West Indies, Ph.D. Thesis.Google Scholar
  32. Darlington, J. P. E. C. (1991). Relationship of individual weights to nest parameters in termites of the genus Macrotermes (Isoptera: Macrotermitinae). Sociobiology, 18, 167–176.Google Scholar
  33. Davies, R. G., Eggleton, P., Jones, D. T., Gathorne-Hardy, F. J., & Hernández, L. M. (2003). Evolution of termite functional diversity: Analysis and synthesis of local ecological and regional influences on local species richness. Journal of Biogeography, 30, 847–877.Google Scholar
  34. Deitz, L. L., Nalepa, C. A., & Klass, K.-D. (2003). Phylogeny of the Dictyoptera re-examined. Entomologische Abhandlungen, 61, 69–91.Google Scholar
  35. Deligne, J., Quennedy, A., & Blum, M. S. (1981). The enemies and defence mechanisms of termites. In H. R. Hermann (Ed.), Social insects (Vol. 2, pp. 1–76). New York: Academic Press.Google Scholar
  36. Demment, M. W., & Van Soest, P. J. (1983). Body size, digestive capacity, and feeding strategies of herbivores. Arkansas: Winrock International.Google Scholar
  37. Douglas, A. E. (1992). Symbiosis in evolution. Oxford Surveys in Evolutionary Biology, 8, 347–382.Google Scholar
  38. Edgar, B. A. (2006). How flies get their size: Genetics meets physiology. Nature Reviews Genetics, 7, 907–916.PubMedGoogle Scholar
  39. Eggleton, P. (2011). An introduction to termites: Biology, taxonomy and functional morphology. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 1–26). Dordrecht: Springer.Google Scholar
  40. Eggleton, P., Davies, R. G., & Bignell, D. E. (1998). Body size and energy use in termites (Isoptera): The responses of soil feeders and wood feeders differ in a tropical forest assemblage. Oikos, 81, 525–530.Google Scholar
  41. Emerson, A. E. (1939). Social coordination and the superorganism. American Midland Naturalist, 21, 182–209.Google Scholar
  42. Emerson, A. E. (1956). Regenerative behaviour and social homeostasis of termites. Ecology, 37, 248–258.Google Scholar
  43. Emerson, A. E. (1958). The evolution of behavior among social insects. In A. Roe & G. G. Simpson (Eds.), Behavior and evolution (pp. 311–335). New Haven: Yale University Press.Google Scholar
  44. Emerson, A. E. (1962). Vestigial characters, regressive evolution and recapitulation among termites. In Termites in the humid tropics (pp. 17–30). New Delhi: UNESCO.Google Scholar
  45. Engel, M. S., Grimaldi, D. A., & Krishna, K. (2009). Termites (Isoptera): Their phylogeny, classification, and rise to ecological dominance. American Museum Novitates, 3650, 1–27.Google Scholar
  46. Foley, W. J., & Cork, S. J. (1992). Use of fibrous diets by small herbivores: How far can the rules be ‘bent’? Trends in Ecology & Evolution, 7, 159–162.Google Scholar
  47. Fong, D. W., Kane, T. C., & Culver, D. C. (1995). Vestigialization and loss of nonfunctional characters. Annual Review of Ecology and Systematics, 26, 249–268.Google Scholar
  48. Fujita, A. I. (2004). Lysozymes in insects: What role do they play in nitrogen metabolism? Physiological Entomology, 29, 305–310.Google Scholar
  49. Fujita, A. I., Shimizu, I., & Abe, T. (2001). Distribution of lysozyme and protease, and amino acid concentration in the guts of a wood-feeding termite, Reticulitermes speratus (Kolbe): Possible digestion of symbiont bacteria transferred by trophallaxis. Physiological Entomology, 26, 116–123.Google Scholar
  50. Gade, B., & Parker, E. D., Jr. (1997). The effect of life cycle stage and genotype on desiccation tolerance in the colonizing parthenogenetic cockroach Pycnoscelus surinamensis and its sexual ancestor P-indicus. Journal of Evolutionary Biology, 10, 479–493.Google Scholar
  51. Grace, J. K., Yamamoto, R. T., & Tamashiro, M. (1995). Relationship of individual worker mass and population decline in a Formosan subterranean termite colony (Isoptera: Rhinotermitidae). Environmental Entomology, 24, 1258–1262.Google Scholar
  52. Grassé, P. P., & Noirot, C. (1945). La transmission des flagelles symbiotiques et les aliments des termites. Biological Bulletin of France and Belgium, 79, 273–297.Google Scholar
  53. Grassé, P. P., & Noirot, C. (1959). L’evolution de la symbiose chez les Isopteres. Experientia, 15, 365–408.PubMedGoogle Scholar
  54. Grassé, P. P., Noirot, C., Clément, G., & Buchli, H. (1950). Sur la signification de la caste des ouviers chez les Termites. Comptes Rendus de L’Academie des Sciences, 230, 892–895.Google Scholar
  55. Grimaldi, D. A., Engel, M. S., & Krishna, K. (2008). The species of Isoptera (Insecta) from the Early Cretaceous Crato Formation: A revision. American Museum Novitates, 3626, 1–30.Google Scholar
  56. Haack, R. A., & Slansky, F., Jr. (1987). Nutritional ecology of wood-feeding Coleoptera, Lepidoptera and Hymenoptera. In F. Slansky Jr. & J. G. Rodriguez (Eds.), Nutritional ecology of insects, mites, spiders and related invertebrates (pp. 449–486). New York: Wiley.Google Scholar
  57. Haagsma, K., Nguyen, J., & Rust, M. K. (1996). A new model describing the weight to surface area relationship of termites (Isoptera). Sociobiology, 28, 33–44.Google Scholar
  58. Hadley, N. F. (1984). Cuticle: Ecological significance. In J. Bereiter-Hahn, A. G. Matoltsy, & K. S. Richards (Eds.), Biology of the integument I. Invertebrates (pp. 685–693). Berlin: Springer.Google Scholar
  59. Hall, B. K. (1998). Evolutionary developmental biology. London: Chapman & Hall.Google Scholar
  60. Hall, A. R., & Colegrave, N. (2008). Decay of unused characters by selection and drift. Journal of Evolutionary Biology, 21, 610–617.PubMedGoogle Scholar
  61. Hall, B. K., & Miyake, T. (1995). How do embryos measure time? In K. J. McNamara (Ed.), Evolutionary change and heterochrony (pp. 3–20). Chichester: Wiley.Google Scholar
  62. Hamilton, W. A. (1978). Evolution and diversity under bark. Symposium of the Royal Entomological Society of London, 9, 154–175.Google Scholar
  63. Han, S. H., & Noirot, C. (1983). Développement de la jeune colonie chez Cubitermes fungifaber (Sjöstedt) (Isoptera, Termitidae). Annales de la Societe Entomologique de France, 19, 413–420.Google Scholar
  64. Hanken, J., & Wake, D. B. (1993). Miniaturization of body size–organismal consequences and evolutionary significance. Annual Review of Ecology and Systematics, 24, 501–519.Google Scholar
  65. Heath, H. (1927). Caste formation in the termite genus Termopsis. Journal of Morphology, 43, 387–425.Google Scholar
  66. Higashi, M., Abe, T., & Burns, T. P. (1992). Carbon-nitrogen balance and termite ecology. Proceedings of the Royal Society of London, B, 249, 303–308.Google Scholar
  67. Hill, G. F. (1942). Termites (Isoptera) from the Australian Region. Melbourne: CSIRO.Google Scholar
  68. Hochuli, D. F. (2001). Insect herbivory and ontogeny: How do growth and development influence feeding behaviour, morphology and host use? Animal Ecology, 26, 363–570.Google Scholar
  69. Honek, A. (1993). Intraspecific variation in body size and fecundity in insects: A general relationship. Oikos, 66, 483–492.Google Scholar
  70. Hopkins, T. L., & Kramer, K. J. (1992). Insect cuticle sclerotization. Annual Review of Entomology, 37, 273–302.Google Scholar
  71. Huber, I. (1974). Taxonomic and ontogenetic studies of cockroaches (Blattaria). University of Kansas Science Bulletin, 50, 233–332.Google Scholar
  72. Huber, I. (1976). Evolutionary trends in Cryptocercus punctulatus (Blattaria: Cryptocercidae). Journal of the New York Entomological Society, 84, 166–168.Google Scholar
  73. Inward, D., Beccaloni, G., & Eggleton, P. (2007). Death of an order: A comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters, 3, 331–335.PubMedGoogle Scholar
  74. Klass, K.-D., & Meier, R. (2006). A phylogenetic analysis of Dictyoptera (Insecta) based on morphological characters. Entomologische Abhandlungen, 63, 3–50.Google Scholar
  75. Klass, K.-D., Nalepa, C. A., & Lo, N. (2008). Wood-feeding cockroaches as models for termite evolution (Insecta: Dictyoptera): Cryptocercus vs. Perisphaeria boleiriana. Molecular Phylogenetics and Evolution, 46, 809–817.PubMedGoogle Scholar
  76. Koehl, M. A. R. (2000). Consequences of size change during ontogeny and evolution. In J. H. Brown & G. B. West (Eds.), Scaling in biology (pp. 67–86). Oxford: Oxford University Press.Google Scholar
  77. Koshikawa, S., Miyazaki, S., Cornette, R., Matsumoto, T., & Miura, T. (2008). Genome size of termites (Insecta, Dictyoptera, Isoptera) and wood roaches (Insecta, Dictyoptera, Cryptocercidae). Naturwissenschaften, 95, 859–867.PubMedGoogle Scholar
  78. Kramer, K. J., Christensen, A. M., Morgan, T. D., Schaefer, J., Czapla, T. H., & Hopkins, T. L. (1991). Analysis of cockroach oothecae and exuviae by solid-state 13C-NMR spectroscopy. Insect Biochemistry, 21, 149–156.Google Scholar
  79. LaBarbera, M. (1986). The evolution and ecology of body size. In D. M. Raup & D. Jablonski (Eds.), Patterns and processes in the history of life: Dahlem Konferenzen (pp. 69–98). Berlin: Springer.Google Scholar
  80. LaFage, J. P., & Nutting, W. L. (1978). Nutrient dynamics of termites. In M. V. Brian (Ed.), Production ecology of ants and termites (pp. 165–232). Cambridge: Cambridge University Press.Google Scholar
  81. Lamberty, M., Zachary, D., Lanot, R., Bordereau, C., Robert, A., Hoffman, J. A., et al. (2001). Insect Immunity. Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. Journal of Biological Chemistry, 276, 4085–4092.PubMedGoogle Scholar
  82. Lenz, M. (1987). Brood production by imaginal and neotenic pairs of Cryptotermes brevis (Walker): The significance of helpers (Isoptera: Kalotermitidae). Sociobiology, 13, 59–66.Google Scholar
  83. Light, S. F., & Zimmerman, E. C. (1936). Termites of Southeastern Polynesia. Bernice P. Bishop Museum Occasional Papers, 12, 3–12.Google Scholar
  84. Lo, N., Tokuda, G., Watanabe, H., Rose, H., Slaytor, M., Maekawa, K., et al. (2000). Evidence from multiple gene sequences indicate that termites evolved from wood-feeding cockroaches. Current Biology, 10, 801–804.PubMedGoogle Scholar
  85. Machida, M., Kitade, O., Miura, T., & Matsumoto, T. (2001). Nitrogen recycling through proctodeal trophallaxis in the Japanese damp-wood termite Hodotermopsis japonica (Isoptera, Termopsidae). Insectes Sociaux, 48, 52–56.Google Scholar
  86. Maderson, P. F. A. (1982). The role of development in macroevolutionary change (Group report). In J. T. Bonner (Ed.), Evolution and development: Dahlem Konferenzen (pp. 279–312). Berlin: Springer.Google Scholar
  87. Maekawa, K., Matsumoto, T., & Nalepa, C. A. (2008). Social biology of the wood-feeding cockroach genus Salganea (Dictyoptera: Blaberidae: Panesthiinae): Did ovoviviparity prevent the evolution of eusociality in the lineage? Insectes Sociaux, 55, 107–114.Google Scholar
  88. Matsuda, R. (1979). Abnormal metamorphosis and arthropod evolution. In A. P. Gupta (Ed.), Arthopod phylogeny (pp. 137–256). New York: Van Nostrand Reinhold.Google Scholar
  89. Matsuda, R. (1987). Animal evolution in changing environments: With special reference to abnormal metamorphosis. New York: Wiley.Google Scholar
  90. Matsumoto, T. (1976). Role of termites in an equatorial rainforest ecosystem of West Malaysia. 1. Population density, biomass, carbon, nitrogen, and calorific content and respiration rate. Oecologia, 22, 153–178.Google Scholar
  91. McKinney, M. L. (1990). Trends in body size evolution. In K. J. McNamara (Ed.), Evolutionary trends (pp. 75–118). Tucson: The University of Arizona Press.Google Scholar
  92. McKinney, M. L., & Gittleman, J. L. (1995). Ontogeny and phylogeny: Tinkering with covariation in life history, morphology and behavior. In K. J. McNamara (Ed.), Evolutionary change and heterochrony (pp. 21–47). Chichester: Wiley.Google Scholar
  93. McKittrick, F. A. (1964). Evolutionary studies of cockroaches. Ithaca: Cornell University Agricultural Experiment Station Memoir #389.Google Scholar
  94. McMahan, E. A. (1969). Feeding relationships and radioisotope techniques. In K. W. Krishna & F. M. Weesner (Eds.), Biology of termites (Vol. 1, pp. 387–406). New York: Academic Press.Google Scholar
  95. Minelli, A. (2009). Perspectives in animal phylogeny & evolution. Oxford: Oxford University Press.Google Scholar
  96. Miura, T., Hirono, Y., Machida, M., Kitade, Q., & Matsumoto, T. (2000). Caste developmental system of the Japanese damp-wood termite Hodotermopsis japonica (Isoptera: Termopsidae). Ecological Research, 15, 83–92.Google Scholar
  97. Nalepa, C. A. (1988). Cost of parental care in Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae). Behavioral Ecology and Sociobiology, 23, 135–140.Google Scholar
  98. Nalepa, C. A. (1990). Early development of nymphs and establishment of hindgut symbiosis in Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae). Annals of the Entomological Society of America, 83, 786–789.Google Scholar
  99. Nalepa, C. A. (1991). Ancestral transfer of symbionts between cockroaches and termites: An unlikely scenario. Proceedings of the Royal Society of London Series B, 246, 185–189.PubMedGoogle Scholar
  100. Nalepa, C. A. (1994). Nourishment and the evolution of termite eusociality. In J. H. Hunt & C. A. Nalepa (Eds.), Nourishment and evolution in insect societies (pp. 57–104). Boulder: Westview Press.Google Scholar
  101. Nalepa, C. A. (2010). Altricial development in subsocial cockroach ancestors: Foundation for phenotypic plasticity in extant termites. Evolution & Development, 12, 95–105.Google Scholar
  102. Nalepa, C. A. (2011). Altricial development in wood-feeding cockroaches: The key antecedent of termite eusociality. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 69–95). Dordrecht: Springer.Google Scholar
  103. Nalepa, C. A., & Bandi, C. (2000). Characterizing the ancestors: Paedomorphosis and termite evolution. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 53–75). Dortrecht: Kluwar Academic Publishers.Google Scholar
  104. Nalepa, C. A., & Bell, W. J. (1997). Postovulation parental investment and parental care in cockroaches. In J. C. Choe & B. J. Crespi (Eds.), Social behavior in insects and arachnids (pp. 26–51). Cambridge: Cambridge University Press.Google Scholar
  105. Nalepa, C. A., Bignell, D., & Bandi, C. (2001a). Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insectes Sociaux, 48, 194–201.Google Scholar
  106. Nalepa, C. A., Byers, G. W., Bandi, C., & Sironi, M. (1997). Description of Cryptocercus clevelandi Byers, n. sp. (Blattaria: Cryptocercidae) from the northwestern United States, molecular analysis of bacterial symbionts in its fat body, and notes on biology, distribution and biogeography. Annals of the Entomological Society of America, 90, 416–424.Google Scholar
  107. Nalepa, C. A., & Lenz, M. (2000). The ootheca of Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae): Homology with cockroach oothecae. Proceedings of the Royal Society of London Series B, 267, 1809–1813.PubMedGoogle Scholar
  108. Nalepa, C. A., Maekawa, K., Shimada, K., Saito, Y., Arellano, C., & Matsumoto, T. (2008). Altricial development in subsocial wood-feeding cockroaches. Zoological Science, 25, 1190–1198.PubMedGoogle Scholar
  109. Nalepa, C. A., Miller, L. R., & Lenz, M. (2001b). Flight characteristics of Mastotermes darwiniensis. Insectes Sociaux, 48, 144–148.Google Scholar
  110. Nalepa, C. A., & Mullins, D. E. (1992). Initial reproductive investment and parental body size in Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae). Physiological Entomology, 17, 255–259.Google Scholar
  111. Nalepa, C. A., & Mullins, D. E. (2009). Hatching asynchrony, survivorship and development in young colonies of the subsocial cockroach Cryptocercus punctulatus. Sociobiology, 54, 489–508.Google Scholar
  112. Nickle, D. A., & Collins, M. S. (1989). Key to the Kalotermitidae of Eastern United States with a new Neotermes from Florida. Proceedings of the Entomological Society of Washington, 91, 269–285.Google Scholar
  113. Noirot, C. (1982). La caste des ouvriers, élément majeur du succès évolutif des termites. Rivista di Biologia, 75, 157–196.Google Scholar
  114. Noirot, C. (1985). Pathways of caste development in the lower termites. In J. A. L. Watson, B. M. Okot-Kotber, & C. Noirot (Eds.), Caste differentiation in social insects (pp. 41–57). Oxford: Pergamon Press.Google Scholar
  115. Noirot, C. (1989). Social structure in termite societies. Ethology, Ecology & Evolution, 1, 1–17.Google Scholar
  116. Noirot, C. (1990). Sexual castes and reproductive strategies in termites. In W. Engels (Ed.), Social insects. An evolutionary approach to castes and reproduction (pp. 5–35). Berlin: Springer.Google Scholar
  117. Noirot, C. (1995). The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. I. Lower termites. Annales de la Societe Entomologique de France, 31, 197–226.Google Scholar
  118. Noirot, C. (2001). The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. II. Higher termites. Annales de la Societe Entomologique de France, 37, 431–471.Google Scholar
  119. Noirot, C., & Darlington, J. P. E. C. (2000). Termite nests: Architecture, regulation and defence. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 121–139). Dortrecht: Kluwar Academic Publishers.Google Scholar
  120. Noirot, C., & Noirot-Timothée, C. (1977). Fine structure of the rectum in termites (Isoptera): A comparative study. Tissue and Cell, 9, 693–710.PubMedGoogle Scholar
  121. Noirot, C., & Pasteels, J. M. (1987). Ontogenetic development and evolution of the worker caste in termites. Experientia, 43, 851–860.Google Scholar
  122. Ohkuma, M., & Brune, A. (2011). Diversity, structure, and evolution of the termite gut microbial community. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 413–438). Dordrecht: Springer.Google Scholar
  123. Ohkuma, M., Noda, S., Hongoh, Y., Nalepa, C. A., & Inoue, T. (2009). Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus. Proceedings of the Royal Society of London B, 276, 239–245.Google Scholar
  124. Okot-Kotber, B. M. (1981). Polymorphism and the development of the first progeny in incipient colonies of Macrotermes michaelseni (Isoptera, Macrotermitidae). Insect Science and its Application, 1, 147–150.Google Scholar
  125. Park, Y. C., & Choe, J. C. (2003). Morphological differences of immature stages between males and females in a Korean wood-feeding cockroach (Cryptocercus kyebangensis). Korean Journal of Biological Science, 7, 105–109.Google Scholar
  126. Pond, C. M. (1983). Parental feeding as a determinant of ecological relationships in Mesozoic terrestrial ecosystems. Palaeontologica, 28, 215–224.Google Scholar
  127. Potrikus, C. J., & Breznak, J. A. (1981). Gut bacteria recycle uric acid nitrogen in termites–a strategy for nutrient conservation. Proceedings of the National Academy of Sciences, 78, 4601–4605.Google Scholar
  128. Raff, R. A. (1996). The shape of life. Genes, development, and the evolution of animal form. Chicago: The University of Chicago Press.Google Scholar
  129. Raff, R. A. (2008). Origins of the other metazoan body plans: The evolution of larval forms. Philosophical Transactions of the Royal Society of London B, 363, 1473–1479.Google Scholar
  130. Raina, A., Park, Y. I., & Gelman, D. (2008). Molting in workers of the Formosan subterranean termite Coptotermes formosanus. Journal of Insect Physiology, 54, 155–161.PubMedGoogle Scholar
  131. Rees, C. J. C. (1986). Skeletal economy in certain herbivorous beetles as an adaptation to poor dietary supply of nitrogen. Ecological Entomology, 11, 221–228.Google Scholar
  132. Reilly, S. M. (1994). The ecological morphology of metamorphosis: Heterochrony and the evolution of feeding mechanisms in salamanders. In P. C. Wainright & S. M. Reilly (Eds.), Ecological morphology. Integrative organismal biology (pp. 319–338). Chicago: The University of Chicago Press.Google Scholar
  133. Richardson, M. L., Mitchell, R. F., Reagel, P. F., & Hanks, L. M. (2010). Causes and consequences of cannibalism in noncarnivorous insects. Annual Review of Entomology, 55, 39–53.PubMedGoogle Scholar
  134. Ricklefs, R. E. (1974). Energetics of reproduction in birds. In R. A. Paynter (Ed.), Avian energetics 15 (pp. 152–292). Cambridge: Nuttall Ornithological Club.Google Scholar
  135. Roisin, Y., & Korb, J. (2011). Social organization and the status of workers in termites. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 133–164). Dordrecht: Springer.Google Scholar
  136. Rollo, C. D. (1986). A test of the principle of allocation using two sympatric species of cockroaches. Ecology, 67, 616–628.Google Scholar
  137. Roonwal, M. L. (1969). Meaurement of termites (Isoptera) for taxonomic purposes. Journal of the Zoological Society of India, 21, 9–66.Google Scholar
  138. Rosengaus, R. B., Maxmen, A. B., Coates, L. E., & Traniello, J. F. A. (1998). Disease resistance: A benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behavioral Ecology and Sociobiology, 44, 125–134.Google Scholar
  139. Rosengaus, R. B., Traniello, J. F. A., & Bulmer, M. S. (2011). Ecology, behavior and evolution of disease resistance in termites. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 165–191). Dordrecht: Springer.Google Scholar
  140. Scheffrahn, R. H., Křeček, J., Chase, J. A., & Su, N.-Y. (1998). Cryptotermes abruptus, a new drywood termite (Isoptera: Kalotermitidae) from Southeastern Mexico. Florida Entomologist, 81, 188–193.Google Scholar
  141. Scriber, J. M., & Slansky, F., Jr. (1981). The nutritional ecology of immature insects. Annual Review of Entomology, 26, 183–211.Google Scholar
  142. Seelinger, G., & Seelinger, U. (1983). On the social organization, alarm and fighting in the primitive cockroach Cryptocercus punctulatus. Zeitschrift für Tierpsychologie, 61, 315–333.Google Scholar
  143. Sennepin, A. (1998). Comportement carnivore chez les termites: Du cannibalisme a la predation. Actes des Colloques Insectes Sociaux, 11, 9–17.Google Scholar
  144. Sewell, J. J., & Gay, F. J. (1978). The genus Kalotermes Hagen in Western Australia (Isoptera: Kalotermitidae). Journal of the Australian Entomological Society, 17, 41–51.Google Scholar
  145. Shimada, K., & Maekawa, K. (2011). Description of the basic features of parent-offspring stomodeal trophallaxis in the subsocial wood-feeding cockroach Salganea esakii (Dictyoptera, Blaberidae, Panesthiinae). Entomological Science, 14, 9–12.Google Scholar
  146. Smith, D. C. (1991). Why do so few animals form endosymbiotic associations with photosynthetic microbes? Philosophical Transactions of the Royal Society of London B, 333, 225–230.Google Scholar
  147. Snyder, T. E. (1954). Order Isoptera. The termites of the United States and Canada. New York: National Pest Control Association.Google Scholar
  148. Sumner, E. C. (1933). The species of the termite genus Zootermopsis Emerson (= Termopsis Hagen). University of California Publications in Entomology, 6, 197–230.Google Scholar
  149. Tillyard, R. J. (1936). Are termites descended from true cockroaches? Nature, 137, 655.Google Scholar
  150. To, L. P., Margulis, L., Chase, D., & Nutting, W. L. (1980). The symbiotic microbial community of the Sonoran desert termite: Pterotermes occidentis. BioSystems, 13, 109–137.PubMedGoogle Scholar
  151. Traniello, J. F. A., Rosengaus, R. B., & Savoie, K. (2002). The development of immunity in a social insect: Evidence for the group facilitation of disease resistance. Proceedings of the National Academy of Sciences USA, 99, 6838–6842.Google Scholar
  152. Waller, D. A., & LaFage, J. P. (1987). Nutritional ecology of termites. In F. Slansky Jr. & J. G. Rodriguez (Eds.), The nutritional ecology of insects, mites, and spiders (pp. 487–532). New York: Wiley.Google Scholar
  153. Ware, J. L., Lal, S., & Grimaldi, D. A. (2010). Neotermes gnathoferrum (Isoptera Kalotermitidae), a new species from Fiji that infests mahogany. Entomologica Americana, 116, 64–72.Google Scholar
  154. Watanabe, H., & Tokuda, G. (2010). Cellulolytic systems in insects. Annual Review of Entomology, 55, 609–632.PubMedGoogle Scholar
  155. Watson, J. A. L. (1971). The development of workers and reproductives in Mastotermes darwiniensis Froggatt (Isoptera). Insectes Sociaux, 18, 173–190.Google Scholar
  156. Weesner, F. (1953). The biology of Tenuirostritermes tenuirostris (Desneux) with emphasis on caste development. University of California Publications in Zoology, 57, 251–302.Google Scholar
  157. Weesner, F. (1969). External anatomy. In K. W. Krishna & F. M. Weesner (Eds.), Biology of termites (Vol. 1, pp. 1–23). New York: Academic Press.Google Scholar
  158. Weesner, F. (1987). Order Isoptera. In F. W. Stehr (Ed.), Immature insects. Dubuque: Kendall/Hunt.Google Scholar
  159. Wheeler, W. M. (1923). Social life among the insects. New York: Harcourt, Brace and Company.Google Scholar
  160. Wickmann, P. O., & Karlsson, B. (1989). Abdomen size, body size and the reproductive effort of insects. Oikos, 56, 209–214.Google Scholar
  161. Wilson, K., Cotter, S. C., Reeson, A. F., & Pell, J. K. (2001). Melanism and disease resistance in insects. Ecology Letters, 4, 637–649.Google Scholar
  162. Wood, T. G., & Sands, W. A. (1978). The role of termites in ecosystems. In M. V. Brian (Ed.), Production ecology of ants and termites (pp. 245–292). Cambridge: Cambridge University Press.Google Scholar
  163. Yanagawa, A., & Shimizu, S. (2007). Resistance of the termite, Coptotermes formosanus to Metarhizium anisopliae due to grooming. BioControl, 52, 75–85.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of EntomologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations